Suppr超能文献

使用tMAVEN提高单分子数据分析的准确性。

Increasing the accuracy of single-molecule data analysis using tMAVEN.

作者信息

Verma Anjali R, Ray Korak Kumar, Bodick Maya, Kinz-Thompson Colin D, Gonzalez Ruben L

机构信息

Department of Chemistry, Columbia University, New York, New York.

Department of Chemistry, Rutgers University-Newark, Newark, New Jersey.

出版信息

Biophys J. 2024 Sep 3;123(17):2765-2780. doi: 10.1016/j.bpj.2024.01.022. Epub 2024 Jan 24.

Abstract

Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physicochemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule data set and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series modeling, analysis, and visualization environment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from preprocessing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule data set with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule data sets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physicochemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule data sets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.

摘要

时间分辨单分子实验包含有关生物分子功能动力学的丰富动力学信息。提取此信息的关键步骤是应用动力学模型,如隐马尔可夫模型(HMM),这些模型可表征控制实验系统的分子机制。不幸的是,研究人员很少能先验地了解这种分子机制的物理化学细节,这就引发了关于如何为给定的单分子数据集选择最合适的动力学模型,以及如果选择了错误的模型会产生什么后果的问题。为了解决这些问题,我们开发并使用了时间序列建模、分析和可视化环境(tMAVEN),这是一个全面、开源且可扩展的软件平台。tMAVEN可以执行单分子分析流程的每一步,从预处理到动力学建模再到绘图,并且设计用于使用多种类型的动力学模型分析单分子数据集。使用tMAVEN,我们通过分析一系列具有不同类型HMM的典型单分子数据集的模拟示例,系统地研究了动力学模型与分子机制之间的不匹配情况,这些示例展现了常见的实验复杂性,如分子异质性。我们的结果表明,没有一种单一的动力学建模策略在数学上适用于所有实验情况。实际上,HMM仅在最简单的情况下才能正确捕捉潜在的分子机制。因此,研究人员必须根据物理化学原理修改HMM,以避免错过其实验所提供的关于分子异质性的重要生物学和生物物理见解的风险。通过允许将多种类型的动力学模型轻松地并行应用于单个单分子数据集,tMAVEN使研究人员能够仔细调整其建模方法,以匹配潜在生物分子动力学的复杂性,并提高其单分子数据分析的准确性。

相似文献

1
Increasing the accuracy of single-molecule data analysis using tMAVEN.
Biophys J. 2024 Sep 3;123(17):2765-2780. doi: 10.1016/j.bpj.2024.01.022. Epub 2024 Jan 24.
2
Increasing the accuracy of single-molecule data analysis using tMAVEN.
bioRxiv. 2024 Jan 21:2023.08.15.553409. doi: 10.1101/2023.08.15.553409.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.
Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep.
9
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.

引用本文的文献

1
An RNA modification prevents extended codon-anticodon interactions from facilitating +1 frameshifting.
Nat Commun. 2025 Aug 11;16(1):7392. doi: 10.1038/s41467-025-62342-4.
2
RNA adapts its flexibility to efficiently fold and resist unfolding.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf681.
3
Observing intersubunit dynamics in single yeast ribosomes.
bioRxiv. 2025 Jun 8:2025.06.05.658109. doi: 10.1101/2025.06.05.658109.
4
SNARE disassembly requires Sec18/NSF side loading.
Nat Struct Mol Biol. 2025 Jul 2. doi: 10.1038/s41594-025-01590-w.
7
Tracking transcription-translation coupling in real time.
Nature. 2025 Jan;637(8045):487-495. doi: 10.1038/s41586-024-08308-w. Epub 2024 Dec 4.
8
Sec18 side-loading is essential for universal SNARE recycling across cellular contexts.
bioRxiv. 2024 Sep 1:2024.08.30.610324. doi: 10.1101/2024.08.30.610324.
9
Machine learning tools advance biophysics.
Biophys J. 2024 Sep 3;123(17):E1-E3. doi: 10.1016/j.bpj.2024.07.036. Epub 2024 Aug 21.
10
Translational T-box riboswitches bind tRNA by modulating conformational flexibility.
Nat Commun. 2024 Aug 3;15(1):6592. doi: 10.1038/s41467-024-50885-x.

本文引用的文献

2
FRETboard: Semisupervised classification of FRET traces.
Biophys J. 2021 Aug 17;120(16):3253-3260. doi: 10.1016/j.bpj.2021.06.030. Epub 2021 Jul 6.
4
Bayesian Inference: The Comprehensive Approach to Analyzing Single-Molecule Experiments.
Annu Rev Biophys. 2021 May 6;50:191-208. doi: 10.1146/annurev-biophys-082120-103921. Epub 2021 Feb 3.
5
Generalizing HMMs to Continuous Time for Fast Kinetics: Hidden Markov Jump Processes.
Biophys J. 2021 Feb 2;120(3):409-423. doi: 10.1016/j.bpj.2020.12.022. Epub 2021 Jan 7.
8
SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics.
Methods. 2021 Sep;193:16-26. doi: 10.1016/j.ymeth.2020.03.008. Epub 2020 Apr 2.
9
Bayesian-Estimated Hierarchical HMMs Enable Robust Analysis of Single-Molecule Kinetic Heterogeneity.
Biophys J. 2019 May 21;116(10):1790-1802. doi: 10.1016/j.bpj.2019.02.031. Epub 2019 Apr 2.
10
The Story of RNA Folding, as Told in Epochs.
Cold Spring Harb Perspect Biol. 2018 Oct 1;10(10):a032433. doi: 10.1101/cshperspect.a032433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验