Suppr超能文献

Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy.

作者信息

Ho C Y, Lever H M, DeSanctis R, Farver C F, Seidman J G, Seidman C E

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA.

出版信息

Circulation. 2000 Oct 17;102(16):1950-5. doi: 10.1161/01.cir.102.16.1950.

Abstract

BACKGROUND

Mutations in the gene that encode cardiac troponin T (cTnT) account for approximately 15% of cases of familial hypertrophic cardiomyopathy (HCM). These mutations are associated with a particularly severe form of HCM characterized by a high incidence of sudden death and a poor overall prognosis, despite subclinical or mild left ventricular hypertrophy.

METHODS AND RESULTS

We evaluated a family with HCM and multiple occurrences of sudden death in children. DNA samples were isolated from peripheral blood or paraffin-embedded tissue, and all protein-encoding exons of the cTnT gene were sequenced. A mutation was identified in exon 11 and is predicted to substitute a phenylalanine-for-serine mutation at residue 179 (Ser(179)Phe) in cTnT. Both parents and 3 of 4 surviving and clinically unaffected children were heterozygous for this mutation; another clinically unaffected child did not carry the mutation. Genetic analysis of DNA from a child who died suddenly at age 17 years demonstrated he was homozygous for this mutation. A review of his echocardiogram revealed profound left and right ventricular hypertrophy.

CONCLUSIONS

An homozygous Ser(179)Phe mutation in cTnT causes a severe form of HCM characterized by striking morphological abnormalities and juvenile lethality. In contrast, the natural history of the heterozygous mutation is benign. These studies emphasize the relevance of genetic diagnosis in hypertrophic cardiomyopathy and provide a new perspective on the clinical consequences of troponin T mutations.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验