Suppr超能文献

根据系统发育谱在细胞中定位蛋白质。

Localizing proteins in the cell from their phylogenetic profiles.

作者信息

Marcotte E M, Xenarios I, van Der Bliek A M, Eisenberg D

机构信息

Molecular Biology Institute, University of California Los Angeles, 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12115-20. doi: 10.1073/pnas.220399497.

Abstract

We introduce a computational method for identifying subcellular locations of proteins from the phylogenetic distribution of the homologs of organellar proteins. This method is based on the observation that proteins localized to a given organelle by experiments tend to share a characteristic phylogenetic distribution of their homologs-a phylogenetic profile. Therefore any other protein can be localized by its phylogenetic profile. Application of this method to mitochondrial proteins reveals that nucleus-encoded proteins previously known to be destined for mitochondria fall into three groups: prokaryote-derived, eukaryote-derived, and organism-specific (i.e., found only in the organism under study). Prokaryote-derived mitochondrial proteins can be identified effectively by their phylogenetic profiles. In the yeast Saccharomyces cerevisiae, 361 nucleus-encoded mitochondrial proteins can be identified at 50% accuracy with 58% coverage. From these values and the proportion of conserved mitochondrial genes, it can be inferred that approximately 630 genes, or 10% of the nuclear genome, is devoted to mitochondrial function. In the worm Caenorhabditis elegans, we estimate that there are approximately 660 nucleus-encoded mitochondrial genes, or 4% of its genome, with approximately 400 of these genes contributed from the prokaryotic mitochondrial ancestor. The large fraction of organism-specific and eukaryote-derived genes suggests that mitochondria perform specialized roles absent from prokaryotic mitochondrial ancestors. We observe measurably distinct phylogenetic profiles among proteins from different subcellular compartments, allowing the general use of prokaryotic genomes in learning features of eukaryotic proteins.

摘要

我们介绍了一种通过细胞器蛋白同源物的系统发育分布来识别蛋白质亚细胞定位的计算方法。该方法基于这样的观察:通过实验定位到特定细胞器的蛋白质往往会共享其同源物的特征性系统发育分布——一种系统发育谱。因此,任何其他蛋白质都可以通过其系统发育谱来定位。将该方法应用于线粒体蛋白,结果表明,先前已知定位于线粒体的核编码蛋白可分为三类:原核生物衍生的、真核生物衍生的和生物体特异性的(即仅在所研究的生物体中发现)。原核生物衍生的线粒体蛋白可以通过其系统发育谱有效地识别。在酿酒酵母中,361个核编码的线粒体蛋白可以以50%的准确率和58%的覆盖率被识别出来。根据这些值以及保守线粒体基因的比例,可以推断出大约630个基因,即核基因组的10%,致力于线粒体功能。在秀丽隐杆线虫中,我们估计大约有660个核编码的线粒体基因,占其基因组的4%,其中大约400个基因来自原核生物线粒体祖先。生物体特异性和真核生物衍生基因的很大一部分表明,线粒体执行着原核生物线粒体祖先所没有的特殊功能。我们观察到来自不同亚细胞区室的蛋白质之间存在明显不同的系统发育谱这使得在了解真核生物蛋白质特征时可以普遍使用原核生物基因组。

相似文献

1
Localizing proteins in the cell from their phylogenetic profiles.根据系统发育谱在细胞中定位蛋白质。
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12115-20. doi: 10.1073/pnas.220399497.

引用本文的文献

2
Assembling bacterial puzzles: piecing together functions into microbial pathways.组装细菌谜题:将功能拼凑成微生物途径。
NAR Genom Bioinform. 2024 Aug 24;6(3):lqae109. doi: 10.1093/nargab/lqae109. eCollection 2024 Sep.
5
Ten Years of Collaborative Progress in the Quest for Orthologs.寻找同源基因的十年协同进展。
Mol Biol Evol. 2021 Jul 29;38(8):3033-3045. doi: 10.1093/molbev/msab098.
6
Cortisol promotes stress tolerance via DAF-16 in .皮质醇通过DAF-16促进应激耐受性。
Biochem Biophys Rep. 2021 Mar 8;26:100961. doi: 10.1016/j.bbrep.2021.100961. eCollection 2021 Jul.
10
A Brief History of Protein Sorting Prediction.蛋白质分拣预测简史。
Protein J. 2019 Jun;38(3):200-216. doi: 10.1007/s10930-019-09838-3.

本文引用的文献

1
Computational genetics: finding protein function by nonhomology methods.
Curr Opin Struct Biol. 2000 Jun;10(3):359-65. doi: 10.1016/s0959-440x(00)00097-x.
2
Protein transport into mitochondria.蛋白质转运至线粒体。
Curr Opin Microbiol. 2000 Apr;3(2):210-4. doi: 10.1016/s1369-5274(00)00077-1.
4
Evolution of organellar genomes.细胞器基因组的进化。
Curr Opin Genet Dev. 1999 Dec;9(6):678-87. doi: 10.1016/s0959-437x(99)00030-1.
6
8
A census of protein repeats.蛋白质重复序列普查。
J Mol Biol. 1999 Oct 15;293(1):151-60. doi: 10.1006/jmbi.1999.3136.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验