Suppr超能文献

Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury.

作者信息

Keller J N, Huang F F, Zhu H, Yu J, Ho Y S, Kindy T S

机构信息

Sanders-Bronwn Research Center on Aging, Department of Biochemistry, University of Kentucky, Lexington 40536-0230, USA.

出版信息

J Cereb Blood Flow Metab. 2000 Oct;20(10):1467-73. doi: 10.1097/00004647-200010000-00008.

Abstract

Numerous studies indicate a role for oxidative stress in the neuronal degeneration and cell death that occur during ischemia-reperfusion injury. Recent data suggest that inhibition of the proteasome may be a means by which oxidative stress mediates neuronal cell death. In the current study, the authors demonstrate that there is a time-dependent decrease in proteasome activity, which is not associated with decreased expression of proteasome subunits, after cerebral ischemia-reperfusion injury. To determine the role of oxidative stress in mediating proteasome inhibition, ischemia-reperfusion studies were conducted in mice that either overexpressed the antioxidant enzyme glutathione peroxidase [GPX 1(+)], or were devoid of glutathione peroxidase activity (GPX -/-). After ischemia-reperfusion, GPX 1(+) mice displayed decreased infarct size, attenuated neurologic impairment, and reduced levels of proteasome inhibition compared with either GPX -/- or wild type mice. In addition, GPX 1(+) mice displayed lower levels of 4-hydroxynonenal-modified proteasome subunits after ischemia-reperfusion injury. Together, these data indicate that proteasome inhibition occurs during cerebral ischemia-reperfusion injury and is mediated, at least in part, by oxidative stress.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验