Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland.
Mol Neurobiol. 2021 Apr;58(4):1404-1417. doi: 10.1007/s12035-020-02202-y. Epub 2020 Nov 12.
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
中风是全球范围内主要的死亡和残疾原因之一。缺血性中风会导致内质网(ER)中未折叠/错误折叠蛋白的积累,这种情况称为 ER 应激。我们假设,先前报道的环氧化酶-2(COX-2)选择性抑制剂塞来昔布在短暂性大脑中动脉闭塞(tMCAO)模型中的神经保护作用依赖于 ER 应激的降低。为了探究这一假设,将 Sprague-Dawley 大鼠进行 1 小时 tMCAO 处理,并在缺血后 1 和 24 小时用塞来昔布或载体处理。在再灌注 12 和 48 小时时测量 ER 应激的主要标志、未折叠蛋白反应(UPR)激活、UPR 诱导的细胞死亡以及泛素蛋白酶体系统(UPS)和自噬(主要的蛋白降解途径)的主要标志物的蛋白和 mRNA 水平。塞来昔布处理可降低多聚泛素蛋白负荷和 ER 应激标志物的表达,如葡萄糖相关蛋白 78(GRP78)、CCAAT/增强子结合蛋白同源蛋白(CHOP)和半胱天冬酶 12,在再灌注 48 小时后。关于 UPR 激活,塞来昔布促进肌醇需求酶 1(IRE1)途径而不是双链 RNA 激活蛋白激酶样内质网激酶(PERK)途径。此外,塞来昔布处理增加蛋白酶体催化亚基的转录水平并降低 p62 蛋白水平,而微管相关蛋白 1 轻链 3(LC3B)II/I 比率保持不变。因此,塞来昔布处理降低 ER 应激的能力与增强 IRE1-UPR 途径和 UPS 降解相关。这些数据支持抗炎治疗调节 ER 应激的能力,并揭示 IRE1 途径作为中风治疗的有前途的治疗靶点。