Sharma A, Espinosa P, Bell L, Tom A, Rodd C
Division of Pediatric Nephrology, McGill University/Montreal Children's Hospital, Montreal, Quebec, Canada.
Kidney Int. 2000 Nov;58(5):2138-46. doi: 10.1111/j.1523-1755.2000.00387.x.
We have reported catch-up growth with hemodialysis (HD) of approximately 15 hours/week. Without an equilibrated post-treatment blood urea nitrogen, the variable-volume single-pool (VVSP) model will not account for urea rebound, inflating the estimated HD dose (K(d)t/V). A two-pool model (FVDP) predicts rebound, but requires fixed compartment volumes for the equations to be solvable in closed form, also inflating K(d)t/V.
We developed an approximate perturbation solution (WKB method) to a variable volume, two-pool (VVDP) model. Estimated model parameters were compared with the results of equilibrated kinetic studies using measured clearance K(d) (N = 17). Once the model was validated, we re-analyzed 292 kinetic studies from our earlier cohort, which was considered well-dialyzed on the basis of growth rates (N = 12, mean annual change in height standard deviation score +0.31, mean follow-up of 26 months).
For the VVSP, FVDP, and VVDP models, respectively, the mean errors were (1) K(d)t/V, 0.22 +/- 0.07, 0.29 +/- 0.17, 0.06 +/- 0.07 (ANOVA, P < 0.001); (2) urea distribution volume vol/wt (%), -8.2 +/- 4.2, -9.1 +/- 3.0, -2.2 +/- 3.6 (P < 0.001). Sequential studies confirmed reproducibility, with a coefficient of variation < or = 5%. In the earlier cohort, a comparison of the VVSP and VVDP models yielded the following: (1) K(d)t/V, 1.91 +/- 0.35 vs. 1.76 +/- 0.33 (P < 0.001); (2) normalized protein catabolic rate (nPCR, g/kg/day), 1.56 +/- 0.39 vs. 1.52 +/- 0.38 (P < 0.001); and (3) K(d) (whole blood, mL/kg/min), 4.8 +/- 0.9 vs. 4.4 +/- 0.8 (P < 0.001).
This VVDP model yields reliable estimates of K(d)t/V and other kinetic parameters using standard blood urea nitrogen sampling. Analysis of patients previously characterized as well-dialyzed on the basis of growth rates clarifies the HD dose needed to sustain normal growth.
我们曾报道过每周约15小时血液透析(HD)的追赶生长情况。若没有平衡的治疗后血尿素氮,可变容积单池(VVSP)模型将无法解释尿素反跳现象,从而使估计的HD剂量(K(d)t/V)虚增。双池模型(FVDP)可预测反跳,但方程要以封闭形式求解需要固定的室容积,这也会使K(d)t/V虚增。
我们针对可变容积双池(VVDP)模型开发了一种近似微扰解(WKB方法)。将估计的模型参数与使用实测清除率K(d)的平衡动力学研究结果进行比较(N = 17)。模型验证后,我们重新分析了我们早期队列中的292项动力学研究,该队列基于生长速率被认为透析充分(N = 12,身高标准差评分的年均变化+0.31,平均随访26个月)。
对于VVSP、FVDP和VVDP模型,平均误差分别为:(1)K(d)t/V,0.22±0.07、0.29±0.17、0.06±0.07(方差分析,P < 0.001);(2)尿素分布容积vol/wt(%),-8.2±4.2、-9.1±3.0、-2.2±3.6(P < 0.001)。序贯研究证实了可重复性,变异系数≤5%。在早期队列中,VVSP和VVDP模型的比较结果如下:(1)K(d)t/V,1.91±0.35对1.76±0.33(P < 0.001);(2)标准化蛋白分解代谢率(nPCR,g/kg/天),1.56±0.39对1.52±0.38(P < 0.001);(3)K(d)(全血,mL/kg/min),4.8±0.9对4.4±0.8(P < 0.001)。
该VVDP模型使用标准血尿素氮采样可得出可靠的K(d)t/V及其他动力学参数估计值。对先前基于生长速率被判定为透析充分的患者进行分析,明确了维持正常生长所需的HD剂量。