Campos P R, Fontanari J F, Stadler P F
Instituto de Física de São Carlos, Universidade de São Paulo, Brazil.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Mar;61(3):2996-3002. doi: 10.1103/physreve.61.2996.
We study analytically the steady-state regime of a network of n error-prone self-replicating templates forming an asymmetric hypercycle and its error tail. We show that the existence of a master template with a higher noncatalyzed self-replicative productivity a than the error tail ensures the stability of chains in which m < n-1 templates coexist with the master species. The stability of these chains against the error tail is guaranteed for catalytic coupling strengths K on the order of a. We find that the hypercycle becomes more stable than the chains only if K is on the order of a2. Furthermore, we show that the minimal replication accuracy per template needed to maintain the hypercycle, the so-called error threshold, vanishes as square root of n/K for large K and N < or = 4.
我们通过分析研究了由n个易出错的自我复制模板组成的不对称超循环网络及其误差尾部的稳态机制。我们表明,存在一个主模板,其非催化自我复制生产率a高于误差尾部,这确保了m < n - 1个模板与主物种共存的链的稳定性。对于催化耦合强度K约为a的情况,这些链对误差尾部的稳定性得到保证。我们发现,只有当K约为a²时,超循环才比链更稳定。此外,我们表明,对于大K和N≤4,维持超循环所需的每个模板的最小复制精度,即所谓的误差阈值,随着n/K的平方根而消失。