Suppr超能文献

早期复制因子的群体选择与生命的起源

Group selection of early replicators and the origin of life.

作者信息

Szathmáry E, Demeter L

机构信息

Department of Plant Taxonomy and Ecology, Roland Eötvös University, Budapest, Hungary.

出版信息

J Theor Biol. 1987 Oct 21;128(4):463-86. doi: 10.1016/s0022-5193(87)80191-1.

Abstract

A major problem of the origin of life has been that of information integration. As Eigen (1971) has shown, a mutant distribution of RNAs replicating without the aid of a replicase cannot integrate sufficient information for the functioning of a higher-level unit utilizing several types of encoded enzymes. He proposed the hypercycle model to bridge this gap in prebiology. It can be shown by a nonlinear game model, incorporating mutation of a hypercycle, that the selection properties of hypercycles make them inefficient information integrators as they cannot compete favourably with all kinds of less efficient information carriers or mutationally coupled hypercycles. The stochastic corrector model is presented as an alternative resolution of Eigen's paradox. It assumes that replicative templates are competing within replicative compartments, whose selective values depend on the internal template composition via a catalytic acid in replication and "metabolism". The dynamics of template replication are analyzed by numerical simulation of master equations. Due to the stochasticity in replication and compartment fission the best compartment types recur. An Eigen equation at the compartment level is set up and calculated. Even selfish template mutants cannot destroy the system though they make it less efficient. The genetic information of templates is evaluated at both levels, and the higher (compartment) level successfully constrains the lower (template) one. Compartmentation together with stochastic effects is sufficient to integrate information dispersed in competitive replicators. Compartment selection is considered to be group selection of replicators. Implications for the origin of life are discussed.

摘要

生命起源的一个主要问题一直是信息整合问题。正如艾根(1971年)所表明的,在没有复制酶帮助的情况下进行复制的RNA的突变分布,无法整合足够的信息来支持利用多种编码酶的高级单元的运作。他提出了超循环模型来弥合前生物学中的这一差距。通过一个纳入超循环突变的非线性博弈模型可以表明,超循环的选择特性使其成为低效的信息整合者,因为它们无法与各种效率较低的信息载体或突变耦合的超循环进行有效竞争。随机校正模型被提出作为对艾根悖论的另一种解决方案。它假设复制模板在复制隔室内竞争,其选择值通过复制和“代谢”中的催化酸取决于内部模板组成。通过主方程的数值模拟分析模板复制的动力学。由于复制和隔室分裂中的随机性,最佳的隔室类型会反复出现。建立并计算了隔室水平的艾根方程。即使是自私的模板突变体也无法破坏系统,尽管它们会使其效率降低。在两个层面评估模板的遗传信息,较高(隔室)层面成功地约束了较低(模板)层面。隔室化与随机效应一起足以整合分散在竞争性复制体中的信息。隔室选择被认为是复制体的群体选择。文中还讨论了其对生命起源的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验