Suppr超能文献

内在荧光蛋白的分子光谱与动力学:珊瑚红(dsRed)和黄色荧光蛋白(Citrine)

Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine).

作者信息

Heikal A A, Hess S T, Baird G S, Tsien R Y, Webb W W

机构信息

School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11996-2001. doi: 10.1073/pnas.97.22.11996.

Abstract

Gene expression of intrinsically fluorescent proteins in biological systems offers new noninvasive windows into cellular function, but optimization of these probes relies on understanding their molecular spectroscopy, dynamics, and structure. Here, the photophysics of red fluorescent protein (dsRed) from discosoma (coral), providing desired longer emission/absorption wavelengths, and an improved yellow fluorescent protein mutant (Citrine) (S65G/V68L/Q69 M/S72A/T203Y) for significant comparison, are characterized by using fluorescence correlation spectroscopy and time-correlated single-photon counting. dsRed fluorescence decays as a single exponential with a 3.65 +/- 0.07-ns time constant, indicating a single emitting state/species independent of pH 4.4-9.0, in contrast with Citrine. However, laser excitation drives reversible fluorescence flicker at 10(3)-10(4) Hz between dark and bright states with a constant partition fraction f(1) = 0.42 +/- 0.06 and quantum yield of approximately 3 x 10(-3). Unlike Citrine (pKa approximately 5.7), pH-dependent proton binding is negligible (pH 3. 9-11) in dsRed. Time-resolved anisotropy of dsRed reveals rapid depolarization (211 +/- 6 ps) plus slow rotational motion (53 +/- 8 ns), in contrast with a single rotational time (16 +/- 2 ns) for Citrine. The molecular dimensions, calculated from rotational and translational diffusion, indicate that dsRed is hydrodynamically 3.8 +/- 0.4 times larger than predicted for a monomer, which suggests an oligomer (possibly a tetramer) configuration even at approximately 10(-9) M. The fast depolarization is attributed to intraoligomer energy transfer between mobile nonparallel chromophores with the initial anisotropy implying a 24 +/- 3 degrees depolarization angle. Large two-photon excitation cross sections ( approximately 100 GM at 990 nm for dsRed and approximately 50 GM at 970 nm for Citrine), advantageous for two-photon-fluorescence imaging in cells, are measured.

摘要

生物系统中固有荧光蛋白的基因表达为细胞功能提供了新的非侵入性观察窗口,但这些探针的优化依赖于对其分子光谱、动力学和结构的理解。在这里,通过荧光相关光谱和时间相关单光子计数对来自盘珊瑚(珊瑚)的红色荧光蛋白(dsRed)的光物理性质进行了表征,该蛋白具有所需的更长发射/吸收波长,还对一种经过改进的黄色荧光蛋白突变体(柠檬黄)(S65G/V68L/Q69M/S72A/T203Y)进行了显著比较。dsRed荧光以3.65±0.07纳秒的时间常数呈单指数衰减,表明存在一个独立于pH 4.4 - 9.0的单一发射态/物种,这与柠檬黄不同。然而,激光激发会在暗态和亮态之间以10³ - 10⁴赫兹的频率驱动可逆荧光闪烁,其恒定分配分数f(1)=0.42±0.06,量子产率约为3×10⁻³。与柠檬黄(pKa约为5.7)不同,dsRed中pH依赖的质子结合在pH 3.9 - 11时可忽略不计。dsRed的时间分辨各向异性显示出快速去极化(211±6皮秒)加上缓慢的旋转运动(53±8纳秒),而柠檬黄只有单一的旋转时间(16±2纳秒)。根据旋转和平移扩散计算出的分子尺寸表明,dsRed的流体动力学尺寸比单体预测值大3.8±0.4倍。这表明即使在约10⁻⁹摩尔浓度下,dsRed也呈寡聚体(可能是四聚体)构型。快速去极化归因于移动的非平行发色团之间的寡聚体内能量转移,初始各向异性意味着去极化角度为24±3度。测量了较大的双光子激发截面(dsRed在990纳米处约为100 GM,柠檬黄在970纳米处约为50 GM),这有利于细胞中的双光子荧光成像。

相似文献

1
Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine).
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11996-2001. doi: 10.1073/pnas.97.22.11996.
2
Kinetic analysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein.
Biochemistry (Mosc). 2001 Dec;66(12):1342-51. doi: 10.1023/a:1013325627378.
3
Single-molecule fluorescence lifetime and anisotropy measurements of the red fluorescent protein, DsRed, in solution.
Photochem Photobiol. 2003 Apr;77(4):362-9. doi: 10.1562/0031-8655(2003)077<0362:sflaam>2.0.co;2.
5
Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy.
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14398-403. doi: 10.1073/pnas.251532698. Epub 2001 Nov 27.
7
The structure of the chromophore within DsRed, a red fluorescent protein from coral.
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11990-5. doi: 10.1073/pnas.97.22.11990.
8
The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection.
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14392-7. doi: 10.1073/pnas.251525598. Epub 2001 Nov 27.
9
New insights into the photophysics of DsRed by multiparameter spectroscopy on single proteins.
J Phys Chem B. 2008 Jun 26;112(25):7669-74. doi: 10.1021/jp7114753. Epub 2008 Jun 4.
10

引用本文的文献

1
Optogenetic elevation of postsynaptic cGMP in the hippocampal dentate gyrus enhances LTP and modifies mouse behaviors.
Front Mol Neurosci. 2024 Nov 26;17:1479360. doi: 10.3389/fnmol.2024.1479360. eCollection 2024.
2
Transport-of-intensity phase imaging using commercially available confocal microscope.
J Biomed Opt. 2024 Nov;29(11):116002. doi: 10.1117/1.JBO.29.11.116002. Epub 2024 Nov 7.
3
Ampholytic Peptides Consisting of an Alternating Lysine/Glutamic Acid Sequence for the Simultaneous Formation of Polyion Complex Vesicles.
ACS Polym Au. 2024 May 29;4(4):320-330. doi: 10.1021/acspolymersau.4c00029. eCollection 2024 Aug 14.
4
A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging.
Methods Mol Biol. 2024;2739:349-373. doi: 10.1007/978-1-0716-3553-7_21.
7
Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept.
Front Mol Biosci. 2021 Sep 14;8:730394. doi: 10.3389/fmolb.2021.730394. eCollection 2021.
8
Fluorescence depolarization dynamics of ionic strength sensors using time-resolved anisotropy.
Biophys J. 2021 Apr 20;120(8):1417-1430. doi: 10.1016/j.bpj.2021.01.035. Epub 2021 Feb 12.
9
cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins.
Biosensors (Basel). 2021 Jan 31;11(2):39. doi: 10.3390/bios11020039.
10
Substitutional landscape of a split fluorescent protein fragment using high-density peptide microarrays.
PLoS One. 2021 Feb 3;16(2):e0241461. doi: 10.1371/journal.pone.0241461. eCollection 2021.

本文引用的文献

1
The structure of the chromophore within DsRed, a red fluorescent protein from coral.
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11990-5. doi: 10.1073/pnas.97.22.11990.
2
Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral.
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11984-9. doi: 10.1073/pnas.97.22.11984.
3
One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.
Biophys J. 2000 Mar;78(3):1589-98. doi: 10.1016/S0006-3495(00)76711-7.
5
Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate.
Curr Biol. 1999 Sep 9;9(17):R628-9. doi: 10.1016/s0960-9822(99)80408-4.
6
Fluorescent proteins from nonbioluminescent Anthozoa species.
Nat Biotechnol. 1999 Oct;17(10):969-73. doi: 10.1038/13657.
7
Dynamic and quantitative Ca2+ measurements using improved cameleons.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2135-40. doi: 10.1073/pnas.96.5.2135.
8
Resolution of fluorescence correlation measurements.
Biophys J. 1999 Mar;76(3):1619-31. doi: 10.1016/S0006-3495(99)77321-2.
9
Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy.
Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13573-8. doi: 10.1073/pnas.95.23.13573.
10
The green fluorescent protein.
Annu Rev Biochem. 1998;67:509-44. doi: 10.1146/annurev.biochem.67.1.509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验