Hales T C, Sarnak P, Pugh M C
Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):12963-4. doi: 10.1073/pnas.220396097.
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
四百多年前,沃尔特·雷利爵士让他的数学助手找出规则堆叠的炮弹堆中炮弹数量的公式。这些研究激发了天文学家约翰内斯·开普勒的好奇心,并引出了一个几个世纪都未解决的问题:为什么常见的炮弹堆是可能的最有效排列方式?在这里,我们讨论哈雷在1998年找到的解决方案。这个282页的证明几乎每一部分都依赖于冗长的计算机验证。随机矩阵理论由物理学家发展而来,用于描述复杂原子核的光谱。特别是,特征值(“能级”)的统计涨落遵循基于对称类型的某些普遍规律。我们将描述这些规律,然后讨论这些规律在黎曼ζ函数零点上的显著出现(黎曼ζ函数是质数的生成函数,也是上世纪最后一个至今仍未被理解的特殊函数)。解释这一现象是一个核心问题。这些主题是不同的,所以我们分别对它们进行介绍。