Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
Phys Rev Lett. 2014 Feb 21;112(7):070406. doi: 10.1103/PhysRevLett.112.070406.
One of the most famous problems in mathematics is the Riemann hypothesis: that the nontrivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.
黎曼 ζ 函数的非平凡零点位于复平面中的一条线上。证明该假设的一种方法是将零点识别为 Hermitian 算符的本征值,其许多性质可以通过与量子混沌的类比得出。利用这一点,我们构建了一组量子图,它们的态密度的振荡部分与黎曼零点相同,从而解释了整体的负号。平滑部分则完全不同,因此也有不同的谱,但这些图可以挑选出低能零点。