Chernoff P R
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7697-9. doi: 10.1073/pnas.97.14.7697.
The Riemann zeta function is given by: [equation, see published text]. Zeta(s) may be analytically continued to the entire s-plane, except for a simple pole at s = 0. Of great interest are the complex zeros of zeta(s). The Riemann hypothesis states that the complex zeros all have real part 1/2. According to the prime number theorem, pn approximately n logn, where pn is the nth prime. Suppose that pn were exactly nlogn. In other words, in the Euler product above, replace the nth prime by nlogn. In this way, we define a pseudo zeta function C(s) for Re s > 1. One can show that C(s) may be analytically continued at least into the half-plane Re s > 0 except for an isolated singularity (presumably a simple pole) at s = 0. It may be shown that the pseudo zeta function C(s) has no complex zeros whatsoever. This means that the complex zeros of the zeta function are associated with the irregularity of the distribution of the primes.
黎曼ζ函数由下式给出:[方程,见已发表文本]。ζ(s) 可以解析延拓到整个s平面,但在s = 0处有一个简单极点除外。ζ(s) 的复零点非常令人感兴趣。黎曼假设指出,所有复零点的实部均为1/2。根据素数定理,pn 近似于 n logn,其中 pn 是第n个素数。假设 pn 恰好是 nlogn。换句话说,在上述欧拉乘积中,用 nlogn 替换第n个素数。通过这种方式,我们为实部Re s > 1定义了一个伪ζ函数C(s)。可以证明,C(s) 至少可以解析延拓到半平面Re s > 0,在s = 0处有一个孤立奇点(大概是一个简单极点)除外。可以证明伪ζ函数C(s) 没有任何复零点。这意味着ζ函数的复零点与素数分布的不规则性有关。