Suppr超能文献

[非骨水泥型全髋关节置换术:髓外参数对初始植入物稳定性及骨-植入物界面应力的影响]

[Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].

作者信息

Ramaniraka N A, Rakotomanana L R, Rubin P J, Leyvraz P

机构信息

Service Universitaire d'Orthopédic et de Traumatologic, Hôpital Orthopédique de la Suisse Romande, avenue Pierre Decker 4, CH-1005 Lausanne, Suisse.

出版信息

Rev Chir Orthop Reparatrice Appar Mot. 2000 Oct;86(6):590-7.

Abstract

PURPOSE OF THE STUDY

After total hip replacement, the initial stability of the cementless femoral stem is a prerequisite for ensuring bone ingrowth and therefore long term fixation of the stem. For custom made implants, long term success of the replacement has been associated with reconstruction of the offset, antero/retro version of the neck orientation and its varus/valgus orientation angle. The goals of this study were to analyze the effects of the extra-medullary parameters on the stability of a noncemented stem after a total hip replacement, and to evaluate the change of stress transfer.

MATERIAL AND METHODS

The geometry of a femur was reconstructed from CT-scanner data to obtain a three-dimensional model with distribution of bone density. The intra-medullary shape of the stem was based on the CT-scanner. Seven extra-medullary stem designs were compared: 1) Anatomical case based on the reconstruction of the femoral head position from the CT data; 2) Retroverted case of - 15 degrees with respect to the anatomical reconstruction; 3) Anteverted case with an excessive anteversion angle of + 15 degrees with respect to the anatomical case; 4) Medial case: shortened femoral neck length (- 10 mm) inducing a medial shift of the femoral head offset; 5) Lateral case: elongated femoral neck length (+ 10 mm) inducing lateral shift of the femoral head offset 6) Varus case with CCD angle 127 degrees; 7) Valgus case with CCD angle 143 degrees. The plasma sprayed stem surface was modeled with a frictional contact between bone and implant (friction coefficient: 0.6). The loading condition corresponding to the single limb stance phase during the gait cycle was used for all cases. Applied loads included major muscular forces (gluteus maximus, gluteus medius, psoas).

RESULTS

Micromotions (debonding and slipping) of the stems relative to the femur and interfacial stresses (pressure and friction) were different according to the extra-medullary parameters. However, the locations of peak stresses and micromotions were not modified. The highest micromotions and stresses corresponded to the lateral situation and to the anteverted case (micro-slipping and pressure were increased up to 35 p.100). High peak pressure was observed for all designs, ranging from anatomical case (34 MPa) to anteverted case (44 MPa). The peak stresses and micromotions were minimal for the anatomical case. The maximal micro-debonding was not significantly modified by the extra-medullary design of the femoral stem.

DISCUSSION

The extra-medullary stem design has been shown to affect the primary stability of implant and the stress transfer after THR. Most interfacial regions present small micro-slipping which normally allows the occurrence of bone ingrowth. The anatomical design presents the lowest micromotions and the lowest interfacial stresses. The worst cases correspond to the anteverted and lateralized cases. Probably, the anteverted situation involves higher torsion torque, which in turn may induce high torsion shear micromotions and higher stress at the interface. Moreover, the lever arm of the weight bearing force on the femoral head is augmented for the augmented neck length situation. This increases the bending moment, and therefore may increase the stresses as well as the stem shear micromotions. In summary, the present results could be taken as biomechanical arguments for the requirement of anatomical reconstruction of not only the intra-medullary shape but also the extra-medullary parameters (reconstruction of the normal hip biomechanics).

摘要

研究目的

全髋关节置换术后,非骨水泥型股骨柄的初始稳定性是确保骨长入以及股骨柄长期固定的前提条件。对于定制植入物,置换的长期成功与偏心距的重建、颈部方向的前/后倾以及内翻/外翻方向角度有关。本研究的目的是分析髓外参数对全髋关节置换术后非骨水泥型股骨柄稳定性的影响,并评估应力传递的变化。

材料与方法

从CT扫描数据重建股骨几何形状,以获得具有骨密度分布的三维模型。股骨柄的髓内形状基于CT扫描。比较了七种髓外股骨柄设计:1)基于CT数据重建股骨头位置的解剖学病例;2)相对于解剖学重建向后倾斜15度的病例;3)相对于解剖学病例前倾角过大为+15度的前倾角病例;4)内侧病例:股骨颈长度缩短(-10毫米)导致股骨头偏心距向内移位;5)外侧病例:股骨颈长度延长(+10毫米)导致股骨头偏心距向外移位;6)颈干角为127度的内翻病例;7)颈干角为143度的外翻病例。用骨与植入物之间的摩擦接触(摩擦系数:0.6)对等离子喷涂的股骨柄表面进行建模。所有病例均采用步态周期中单腿站立阶段对应的加载条件。施加的载荷包括主要肌肉力量(臀大肌、臀中肌、腰大肌)。

结果

根据髓外参数的不同,股骨柄相对于股骨的微动(脱粘和滑动)以及界面应力(压力和摩擦力)也有所不同。然而,峰值应力和微动的位置并未改变。最高的微动和应力对应于外侧情况和前倾角病例(微滑动和压力增加高达35%)。所有设计均观察到高峰值压力,范围从解剖学病例(34兆帕)到前倾角病例(44兆帕)。解剖学病例的峰值应力和微动最小。股骨柄的髓外设计对最大微脱粘没有显著影响。

讨论

已表明髓外股骨柄设计会影响植入物的初始稳定性以及全髋关节置换术后的应力传递。大多数界面区域存在微小的微滑动,这通常允许骨长入的发生。解剖学设计呈现出最低的微动和最低的界面应力。最差的情况对应于前倾角和外侧化病例。可能,前倾角情况涉及更高的扭转扭矩,这反过来可能导致高扭转剪切微动以及界面处更高的应力。此外,对于颈长增加的情况,股骨头负重力量臂会增大。这会增加弯矩,因此也可能增加应力以及股骨柄剪切微动。总之,本研究结果可作为不仅需要髓内形状而且需要髓外参数进行解剖学重建(重建正常髋关节生物力学)的生物力学依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验