Cantello R, Civardi C, Cavalli A, Varrasi C, Vicentini R
Department of Medical Sciences, Section of Neurology, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
Clin Neurophysiol. 2000 Nov;111(11):1981-9. doi: 10.1016/s1388-2457(00)00431-4.
Disease manifestations such as photic cortical reflex myoclonus or myoclonus due to intermittent light stimulation rely on a pathologic interaction between non-structured visual inputs and the corticospinal system. We wanted to assess the normal interaction, if any, between a prior photic input and the output of the cortico-motoneuron connection.
In 9 consenting healthy subjects we quantified the changes exerted by a sudden, unexpected bright light flash on (i) the motor potentials (MEPs) evoked in the right first dorsal interosseous muscle (FDI) by transcranial magnetic or electrical stimulation (TMS/TES) of the primary motor cortex, (ii) the FDI F-waves and (iii) the soleus H-wave. Separately, we measured the simple reaction times to the flash itself. All determinations were repeated twice with an interval of 2-24 months.
When the flash preceded TMS by 55-70 ms, the MEP size was reduced, while at interstimulus intervals (ISIs) of 90-130 ms it was enlarged. Statistical significance (P<0.05) emerged at ISIs of 55, 70, 100, 105 and 120 ms. Conversely, the MEP latency was prolonged at ISIs of 55-70 ms and shortened at ISIs of 90-130 ms (P<0.05 at ISIs of 55, 110 and 130 ms). Electrical MEPs were enhanced at an ISI of 120 ms. The F-wave size showed a non-significant trend of enhancement at ISIs of 90-130 ms. The soleus H-wave showed significant enlargement at ISIs of 90-130 ms (P<0.05 at ISIs of 100 and 105 ms). The minimum reaction time was on average 120 ms.
An unexpected photic input, to which no reaction is planned, can cause an early inhibition of the responses to TMS. We think its origin lies within the primary motor cortex, since it is not associated with changes in spinal excitability or electrical MEPs. A later facilitation persists using TES and has a temporal relationship with an enlargement of the soleus H-wave. Thus, it likely results from activation of descending (possibly reticulospinal) fibers that excite the spinal motor nucleus.
诸如光刺激皮层反射性肌阵挛或间歇性光刺激所致肌阵挛等疾病表现依赖于非结构化视觉输入与皮质脊髓系统之间的病理性相互作用。我们想要评估先前的光刺激输入与皮质运动神经元连接输出之间是否存在正常的相互作用(若存在的话)。
在9名自愿参与的健康受试者中,我们量化了突然出现的意外强光闪光对以下各项产生的变化:(i) 通过对初级运动皮层进行经颅磁刺激或电刺激(TMS/TES)在右侧第一背侧骨间肌(FDI)诱发的运动电位(MEP);(ii) FDI的F波;(iii) 比目鱼肌的H波。另外,我们测量了对闪光本身的简单反应时间。所有测定均重复两次,间隔时间为2 - 24个月。
当闪光先于TMS 55 - 70毫秒出现时,MEP大小减小,而在刺激间隔(ISI)为90 - 130毫秒时增大。在ISI为55、70、100、105和120毫秒时出现统计学显著性(P<0.05)。相反,MEP潜伏期在ISI为55 - 70毫秒时延长,在ISI为90 - 130毫秒时缩短(在ISI为55、110和130毫秒时P<0.05)。电刺激MEP在ISI为120毫秒时增强。F波大小在ISI为90 - 130毫秒时呈现不显著的增强趋势。比目鱼肌H波在ISI为90 - 130毫秒时显著增大(在ISI为100和105毫秒时P<0.05)。最短反应时间平均为120毫秒。
一个未计划做出反应的意外光刺激输入可导致对TMS反应的早期抑制。我们认为其起源在于初级运动皮层,因为它与脊髓兴奋性或电刺激MEP的变化无关。使用电刺激时随后会出现促进作用,且与比目鱼肌H波增大存在时间关系。因此,它可能是由兴奋脊髓运动神经元的下行(可能是网状脊髓)纤维的激活所致。