Zhang L, Volknandt W, Gundelfinger E D, Zimmermann H
Biozentrum der J.W. Goethe-Universität, AK Neurochemie, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany.
J Neurocytol. 2000 Jan;29(1):19-30. doi: 10.1023/a:1007108012667.
In central synapses synaptic vesicle docking and exocytosis occurs at morphologically specialized sites (active zones) and requires the interaction of specific proteins in the formation of a SNARE complex. In contrast, neurosecretory terminals lack active zones. Using the cryo-immunogold technique we analyzed the localization of synaptic vesicle proteins and of proteins of the docking complex at active zones. This was compared to the localization of the identical proteins in neurosecretory terminals. In addition we compared the vesicular and granular localization of the proteins investigated. Synaptic vesicles in rat hippocampal mossy fiber synapses and microvesicles in the neurosecretory terminals of the neurohypophysis contained in common the proteins VAMP II (a v-SNARE), SV2, rab3A, and N-type Ca(2+) channels. Only minor immunolabeling for these proteins was observed at neurosecretory granules. These results support the notion of a close functional identity of microvesicles from neurosecretory endings of the neurohypophysis and of synaptic vesicles. The vesicular pool of N-type Ca(2+) channels may serve their stimulation-induced translocation into the plasma membrane. We find increased labeling for VAMP II, SNAP-25, N-type Ca(2+) channels and of rab3A at the active zones of mossy fiber synapses. Labeling at release sites is by far highest for Bassoon, a high molecular weight protein of the active zone. The labeling pattern implies an association of Bassoon with presynaptic dense projections. Bassoon is absent from neurosecretory terminals and VAMP II, SNAP-25, rab3A, and N-type Ca(2+) channels reveal a scattered distribution over the plasma membrane. The competence of the presynaptic active zone for selective vesicle docking may not primarily result from its contents in SNARE proteins but rather from the preformation of presynaptic dense projections as structural guides for vesicle exocytosis.
在中枢突触中,突触小泡的对接和胞吐作用发生在形态学上特化的位点(活性区),并且在形成SNARE复合体时需要特定蛋白质的相互作用。相比之下,神经分泌终末缺乏活性区。我们使用冷冻免疫金技术分析了突触小泡蛋白和对接复合体蛋白在活性区的定位。并将其与相同蛋白在神经分泌终末中的定位进行了比较。此外,我们还比较了所研究蛋白质的囊泡状和颗粒状定位。大鼠海马苔藓纤维突触中的突触小泡以及神经垂体神经分泌终末中的微泡共同含有VAMP II(一种v-SNARE)、SV2、rab3A和N型Ca(2+)通道蛋白。在神经分泌颗粒上仅观察到这些蛋白的少量免疫标记。这些结果支持了神经垂体神经分泌末梢的微泡与突触小泡在功能上密切相同的观点。N型Ca(2+)通道的囊泡池可能有助于其受刺激诱导向质膜的转运。我们发现在苔藓纤维突触的活性区,VAMP II、SNAP-25、N型Ca(2+)通道和rab3A的标记增加。释放位点的标记物中,活性区的高分子量蛋白巴松管(Bassoon)的标记量最高。标记模式表明巴松管与突触前致密突起有关。神经分泌终末中不存在巴松管,而VAMP II SNAP-25、rab3A和N型Ca(2+)通道在质膜上呈分散分布。突触前活性区对选择性小泡对接的能力可能主要不是源于其SNARE蛋白的含量,而是源于突触前致密突起作为小泡胞吐的结构导向的预先形成。