Suppr超能文献

Isolation and identification of psoralen plus ultraviolet A (PUVA)-induced genes in human dermal fibroblasts by polymerase chain reaction-based subtractive hybridization.

作者信息

Wlaschek M, Hommel C, Wenk J, Brenneisen P, Ma W, Herrmann G, Scharffetter-Kochanek K

机构信息

Department of Dermatology, University of Cologne, Cologne, Germany.

出版信息

J Invest Dermatol. 2000 Nov;115(5):909-13. doi: 10.1046/j.1523-1747.2000.00120.x.

Abstract

Premature aging of the skin is a prominent side-effect of psoralen photoactivation, a therapy used for a variety of skin disorders. Recently, we demonstrated that treatment of human dermal fibroblasts with 8-methoxypsoralen and ultraviolet A irradiation resulted in a permanent growth arrest with a switch of mitotic to postmitotic fibroblasts. Furthermore, an upregulation of matrix-degrading metalloproteinases and a high level of de novo expression of the senescence-associated beta-galactosidase was detected in the PUVA-treated postmitotic fibroblasts. The molecular basis for this PUVA-induced change in the functional and morphologic phenotype of fibroblasts resembling or mimicking replicative senescence is, however, unknown. Herein after, we have used a polymerase chain reaction-based subtractive hybridization protocol to identify human genes that are induced by PUVA treatment. Application of polymerase chain reaction-Select resulted in the cloning of four PUVA genes. Sequence analysis and homology searches identified three cDNA clones of known genes related to cell cycle regulation (p21waf1/cip1), stress response (ferritin H) and connective tissue metabolism (tissue inhibitor of metalloproteinases-3), whereas one cDNA clone represented a novel gene (no. 478). Northern blot analyses were performed to confirm a PUVA-dependent increase in specific mRNA levels in human dermal fibroblasts in vitro. This report on the identification of growth arrest related genes in PUVA-treated fibroblasts may stimulate further research addressing the causal role of these known and novel genes in extrinsic and intrinsic aging processes on a molecular and cellular level.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验