Beckett C S, Loughman J A, Karberg K A, Donato G M, Goldman W E, Kranz R G
Departments of Biology, and Molecular Microbiology, Campus Box 1137, Washington University, One Brookings Drive, St Louis, MO 63130, USA.
Mol Microbiol. 2000 Nov;38(3):465-81. doi: 10.1046/j.1365-2958.2000.02174.x.
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.
与其他细胞色素不同,c型细胞色素在血红素的两个乙烯基与蛋白质的两个半胱氨酸之间形成两个共价键。这种血红素连接在原核生物或真核生物的线粒体及叶绿体中需要特定的组装蛋白。在此研究中发现,百日咳博德特氏菌是广泛存在的系统II细胞色素c合成途径的一个出色细菌模型。四个不同基因(ccsA、ccsB、ccsX和dipZ)发生突变会导致百日咳博德特氏菌菌株无法合成至少七种c型细胞色素中的任何一种。使用细胞色素c4:碱性磷酸酶融合蛋白作为双功能报告基因,结果表明百日咳博德特氏菌野生型和突变型菌株都能分泌一种活性碱性磷酸酶融合蛋白。然而,与野生型不同,所有四个突变体都无法共价连接血红素,导致N端脱辅基细胞色素c4成分降解。因此,在四个突变体中脱辅基细胞色素c的分泌都是正常的,但在周质组装步骤(或血红素输出到周质)中都存在缺陷。CcsX与硫氧还蛋白相关,硫氧还蛋白具有保守的CysXxxXxxCys基序。使用phoA基因融合体作为报告基因,证明CcsX是一种周质硫氧还蛋白样蛋白。百日咳博德特氏菌的dipZ(即dsbD)和ccsX突变体的组装缺陷都可通过硫醇还原化合物二硫苏糖醇和2-巯基乙烷磺酸得到纠正。这些结果表明,DipZ和CcsX是脱辅基细胞色素c半胱氨酸在连接前进行周质还原所必需的。相比之下,ccsA和ccsB突变体不能被外源还原剂纠正,这表明CcsA和CcsB是周质中血红素连接步骤本身(或血红素输出到周质)所必需的。与此推测相关,通过实验确定了CcsB的拓扑结构,证明CcsB有四个跨膜结构域和一个大的435个氨基酸的周质区域。