Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
J Mol Biol. 2020 Aug 21;432(18):5091-5103. doi: 10.1016/j.jmb.2020.04.008. Epub 2020 Apr 16.
The formation of disulfide bonds in proteins is an essential process in both prokaryotes and eukaryotes. In gram-negative bacteria including Escherichia coli, the proteins DsbA and DsbB mediate the formation of disulfide bonds in the periplasm. DsbA acts as the periplasmic oxidant of periplasmic substrate proteins. DsbA is reoxidized by transfer of reducing equivalents to the 4 TM helix membrane protein DsbB, which transfers reducing equivalents to ubiquinone or menaquinone. Multiple structural studies of DsbB have provided detailed structural information on intermediates in the process of DsbB catalyzed oxidation of DsbA. These structures and the insights gained are described. In proteins with more than one pair of Cys residues, there is the potential for formation of non-native disulfide bonds, making it necessary for the cell to have a mechanism for the isomerization of such non-native disulfide bonds. In E. coli, this is mediated by the proteins DsbC and DsbD. DsbC reduces mis-formed disulfide bonds. The eight-TM-helix protein DsbD reduces DsbC and is itself reduced by cytoplasmic thioredoxin. DsbD also contributes reducing equivalents for the reduction of cytochrome c to facilitate heme attachment. The DsbD functional homolog CcdA is a six-TM-helix membrane protein that provides reducing equivalents for the reduction of cytochrome c. A recent structure determination of CcdA has provided critical insights into how reducing equivalents are transferred across the membrane that likely also provides understanding how this is achieved by DsbD as well. This structure and the insights gained are described.
蛋白质中二硫键的形成是原核生物和真核生物中必不可少的过程。在包括大肠杆菌在内的革兰氏阴性细菌中,蛋白质 DsbA 和 DsbB 介导周质中蛋白质中二硫键的形成。DsbA 作为周质底物蛋白的周质氧化剂。DsbA 通过将还原当量转移到 4TM 螺旋膜蛋白 DsbB 中而被重新氧化,DsbB 将还原当量转移给泛醌或甲萘醌。对 DsbB 的多项结构研究提供了 DsbB 催化 DsbA 氧化过程中中间体的详细结构信息。这些结构和获得的见解将被描述。在具有不止一对 Cys 残基的蛋白质中,有可能形成非天然的二硫键,因此细胞必须有一种机制来使这种非天然的二硫键发生异构化。在大肠杆菌中,这是由蛋白质 DsbC 和 DsbD 介导的。DsbC 还原错误形成的二硫键。八 TM 螺旋蛋白 DsbD 还原 DsbC,自身被细胞质硫氧还蛋白还原。DsbD 还提供还原当量,用于将细胞色素 c 还原为促进血红素附着。DsbD 的功能同源物 CcdA 是一种六 TM 螺旋膜蛋白,为细胞色素 c 的还原提供还原当量。最近对 CcdA 的结构测定提供了对跨膜还原当量如何转移的关键见解,这可能也为理解 DsbD 如何实现这一目标提供了线索。该结构和获得的见解将被描述。