Strub A, Lim J H, Pfanner N, Voos W
Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany.
Biol Chem. 2000 Sep-Oct;381(9-10):943-9. doi: 10.1515/BC.2000.115.
Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.
线粒体蛋白在细胞质中以前体蛋白的形式合成,然后在翻译后被导入该细胞器。一个复杂的转运机制系统识别前体多肽并将其转运穿过线粒体膜。转运过程所需的能量主要由线粒体膜电位(Δψ)和ATP水解提供。线粒体热休克蛋白70(mtHsp70)已被确定为驱动前体多肽向线粒体基质进行膜转运的主要ATP酶。mtHsp70与伴侣蛋白Tim44和Mge1一起,在内膜内表面形成一个导入马达复合体,与进入的前体蛋白相互作用。这个导入马达复合体驱动多肽在转运通道中的移动以及前体蛋白在外膜外侧羧基末端部分的展开。本文讨论了mtHsp70在多肽转运过程中的两种分子机制模型。在“捕获”模型中,前体的移动是由多肽链在转运孔中的布朗运动产生的。这种随机运动通过与基质中的mtHsp70相互作用而变为有方向性的。对导入马达复合体条件突变体的详细表征为一个扩展模型提供了基础。在这个“拉动”模型中,mtHsp70通过Tim44在内膜上的附着以及ATP诱导的构象变化,导致对结合的前体多肽产生向内的力。导入马达复合体的这种积极作用对于含有紧密折叠结构域的蛋白质的转运是必要的。我们认为这两种机制相互补充,以实现前体蛋白导入的高效率。