Hoenger A, Doerhoefer M, Woehlke G, Tittmann P, Gross H, Song Y H, Mandelkow E
European Molecular Biology Laboratory, Heidelberg, Germany.
Biol Chem. 2000 Sep-Oct;381(9-10):1001-11. doi: 10.1515/BC.2000.123.
The surface topography of opened-up microtubule walls (sheets) decorated with monomeric and dimeric kinesin motor domains was investigated by freeze-drying and unidirectional metal shadowing. Electron microscopy of surface-shadowed specimens produces images with a high signal/noise ratio, which enable a direct observation of surface features below 2 nm detail. Here we investigate the inner and outer surface of microtubules and tubulin sheets with and without decoration by kinesin motor domains. Tubulin sheets are flattened walls of microtubules, keeping lateral protofilament contacts intact. Surface shadowing reveals the following features: (i) when the microtubule outside is exposed the surface relief is dominated by the bound motor domains. Monomeric motor constructs generate a strong 8 nm periodicity, corresponding to the binding of one motor domain per alpha-beta-tubulin heterodimer. This surface periodicity largely disappears when dimeric kinesin motor domains are used for decoration, even though it is still visible in negatively stained or frozen hydrated specimens. This could be explained by disorder in the binding of the second (loosely tethered) kinesin head, and/or disorder in the coiled-coil tail. (ii) Both surfaces of undecorated sheets or microtubules, as well as the inner surface of decorated sheets, reveal a strong 4 nm repeat (due to the periodicity of tubulin monomers) and a weak 8 nm repeat (due to slight differences between alpha- and beta-tubulin). The differences between alpha- and beta-tubulin on the inner surface are stronger than expected from cryo-electron microscopy of unstained microtubules, indicating the existence of tubulin subdomain-specific surface properties that reflect the surface corrugation and hence metal deposition during evaporation. The 16 nm periodicity visible in some negatively stained specimens (caused by the pairing of cooperatively bound kinesin dimers) is not detected by surface shadowing.
通过冷冻干燥和单向金属投影,研究了用单体和二聚体驱动蛋白运动结构域修饰的开放微管壁(薄片)的表面形貌。对表面投影标本进行电子显微镜观察可产生具有高信噪比的图像,从而能够直接观察到细节低于2纳米的表面特征。在这里,我们研究了有无驱动蛋白运动结构域修饰的微管和微管蛋白薄片的内表面和外表面。微管蛋白薄片是微管的扁平壁,保持横向原纤维接触完整。表面投影揭示了以下特征:(i)当微管外部暴露时,表面起伏主要由结合的运动结构域主导。单体运动构建体产生强烈的8纳米周期性,对应于每个α-β-微管蛋白异二聚体结合一个运动结构域。当使用二聚体驱动蛋白运动结构域进行修饰时,这种表面周期性在很大程度上消失,尽管在负染或冷冻水合标本中仍然可见。这可以通过第二个(松散连接)驱动蛋白头部结合的无序以及/或者卷曲螺旋尾部的无序来解释。(ii)未修饰薄片或微管的两个表面,以及修饰薄片的内表面,都显示出强烈的4纳米重复(由于微管蛋白单体的周期性)和微弱的8纳米重复(由于α-和β-微管蛋白之间的细微差异)。内表面上α-和β-微管蛋白之间的差异比未染色微管的冷冻电子显微镜观察结果预期的更强,表明存在反映表面波纹并因此反映蒸发过程中金属沉积的微管蛋白亚结构域特异性表面特性。在一些负染标本中可见的16纳米周期性(由协同结合的驱动蛋白二聚体配对引起)在表面投影中未被检测到。