Seitz Arne, Surrey Thomas
European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
EMBO J. 2006 Jan 25;25(2):267-77. doi: 10.1038/sj.emboj.7600937. Epub 2006 Jan 12.
Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single quantum dot-labelled kinesins on crowded microtubules under steady-state conditions and to measure the degree of crowding on a microtubule at steady-state. We find that the runs of kinesins are little affected by high kinesin densities on a microtubule. However, the presence of high densities of a mutant kinesin that is not able to step efficiently reduces the average speed of wild-type kinesin, while hardly changing its processivity. This indicates that kinesin waits in a strongly bound state on the microtubule when encountering an obstacle until the obstacle unbinds and frees the binding site for kinesin's next step. A simple kinetic model can explain quantitatively the behaviour of kinesin under both crowding conditions.
驱动蛋白-1是一种沿微管运输货物的持续性分子马达。在细胞内,几种马达蛋白和微管相关蛋白会竞争与微管的结合。因此,就出现了这样一个问题:微管上的拥挤状态是如何影响驱动蛋白-1的持续性运动的。在这里,我们使用全内反射荧光显微镜在稳态条件下对单个量子点标记的驱动蛋白在拥挤微管上的运行进行体外成像,并测量稳态下微管上的拥挤程度。我们发现,微管上高浓度的驱动蛋白对驱动蛋白的运行影响很小。然而,高密度存在的一种无法有效迈步的突变型驱动蛋白会降低野生型驱动蛋白的平均速度,同时几乎不改变其持续性。这表明,驱动蛋白在微管上遇到障碍物时会以强结合状态等待,直到障碍物解离并释放出驱动蛋白下一步的结合位点。一个简单的动力学模型可以定量解释拥挤条件下驱动蛋白的行为。