Borea P A, Dalpiaz A, Varani K, Gilli P, Gilli G
Dipartimento di Medicina Clinica e Sperimentale-Sezione di Farmacologia, 44100, Ferrara, Italy.
Biochem Pharmacol. 2000 Dec 1;60(11):1549-56. doi: 10.1016/s0006-2952(00)00368-3.
The present commentary surveys the methods for obtaining the thermodynamic parameters of the drug-receptor binding equilibrium, DeltaG degrees, DeltaH degrees, DeltaS degrees, and DeltaC degrees (p) (standard free energy, enthalpy, entropy, and heat capacity, respectively). Moreover, it reviews the available thermodynamic data for the binding of agonists and antagonists to several G-protein coupled receptors (GPCRs) and ligand-gated ion channel receptors (LGICRs). In particular, thermodynamic data for five GPCRs (beta-adrenergic, adenosine A(1), adenosine A(2A), dopamine D(2), and 5-HT(1A)) and four LGICRs (glycine, GABA(A), 5-HT(3), and nicotinic) have been collected and analyzed. Among these receptor systems, seven (three GPCRs and all LGICRs) show "thermodynamic agonist-antagonist discrimination": when the agonist binding to a given receptor is entropy-driven, the binding of its antagonist is enthalpy-driven, or vice versa. A scatter plot of all entropy versus enthalpy values of the database gives a regression line with the equation TDeltaS degrees (kJ mol(-1); T = 298.15 K) = 40.3 (+/- 0.7) + 1.00 (+/-0.01) DeltaH degrees (kJ mol(-1)); N = 184; r = 0.981; P < 0.0001 - which is of the form DeltaH degrees = beta. DeltaS degrees, revealing the presence of the "enthalpy-entropy compensation" phenomenon. This means that any decrease of binding enthalpy is compensated for by a parallel decrease of binding entropy, and vice versa, in such a manner that affinity constant values (K(A)) of drug-receptor equilibrium (DeltaG degrees = -RT ln K(A) = DeltaH degrees - TDeltaS degrees ) cannot be greater than 10(11) M(-1). According to the most recent hypotheses concerning drug-receptor interaction mechanisms, these thermodynamic phenomena appear to be a consequence of the rearrangement of solvent molecules that occurs during the binding.
本述评综述了获取药物 - 受体结合平衡热力学参数(分别为标准自由能ΔG°、焓ΔH°、熵ΔS°和热容ΔC°(p))的方法。此外,还回顾了激动剂和拮抗剂与几种G蛋白偶联受体(GPCR)和配体门控离子通道受体(LGICR)结合的现有热力学数据。特别收集并分析了五种GPCR(β - 肾上腺素能、腺苷A(1)、腺苷A(2A)、多巴胺D(2)和5 - HT(1A))和四种LGICR(甘氨酸、GABA(A)、5 - HT(3)和烟碱型)的热力学数据。在这些受体系统中,有七个(三个GPCR和所有LGICR)表现出“热力学激动剂 - 拮抗剂区分”:当激动剂与给定受体的结合由熵驱动时,其拮抗剂的结合由焓驱动,反之亦然。数据库中所有熵值与焓值的散点图给出了一条回归线,其方程为TDeltaS°(kJ mol⁻¹;T = 298.15 K) = 40.3(±0.7) + 1.00(±0.01)DeltaH°(kJ mol⁻¹);N = 184;r = 0.981;P < 0.0001 - 其形式为DeltaH° = β·DeltaS°,揭示了“焓 - 熵补偿”现象的存在。这意味着结合焓的任何降低都由结合熵的平行降低来补偿,反之亦然,使得药物 - 受体平衡的亲和常数(K(A))值(ΔG° = -RT ln K(A) = ΔH° - TDeltaS°)不能大于10¹¹ M⁻¹。根据关于药物 - 受体相互作用机制的最新假说,这些热力学现象似乎是结合过程中发生的溶剂分子重排的结果。