Suppr超能文献

Receptor binding thermodynamics at the neuronal nicotinic receptor.

作者信息

Borea Pier Andrea, Varani Katia, Gessi Stefania, Merighi Stefania, Dal Piaz Alessandro, Gilli Paola, Gilli Gastone

机构信息

Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, 44100 Ferrara, Italy.

出版信息

Curr Top Med Chem. 2004;4(3):361-8. doi: 10.2174/1568026043451410.

Abstract

Simple determination of K(A) or K(D) values makes it possible to calculate the standard free energy DeltaG degrees = -RTlnK(A) = RT lnK(D)(T= 298.15 K) of the binding equilibrium but not that of its two components as defined by the Gibbs equation DeltaG degrees = DeltaH degrees - TDeltaS degrees where DeltaH degrees and DeltaS degrees are the equilibrium standard enthalpy and entropy, respectively. Recently, it has been shown that the relative DeltaH degrees and DeltaS degrees magnitudes can often give a simple "in vitro" way for discriminating "the effect", that is the manner in which the drug interferes with the signal transduction pathways. This particular effect, called "thermodynamic discrimination", results from the fact that binding of antagonists may be enthalpy-driven and that of agonists entropy-driven, or vice-versa. In the past, the thermodynamic discrimination was reported for the beta-adrenergic G-protein-coupled receptor (GPCR) and confirmed later for adenosine A(1), A(2A) and A(3) receptors. Moreover, it has been found that the binding of all ligand-gated ion-channel receptors (LGICR) investigated was thermodynamically discriminated. In particular, affinity constants for typical neuronal nicotinic receptor ligands were obtained by both saturation and inhibition experiments with the radioligand [(3)H]-cytisine, a ganglionic nicotinic agonist. Thermodynamic parameters indicated that agonistic binding was both enthalpy- and entropy-driven, while antagonistic binding was totally entropy-driven. These results have shown that neuronal nicotinic receptor agonists and antagonists were thermodynamically discriminated. On these grounds, the thermodynamic behaviour makes it possible to discriminate drug pharmacological profiles in vivo through binding experiments in vitro.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验