Hornibrook E R, Longstaffe F J, Fyfe W S
Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada.
Isotopes Environ Health Stud. 2000;36(2):151-76. doi: 10.1080/10256010008032940.
Much uncertainty still exists regarding spatial and temporal variability of stable isotope ratios (13C/12C and D/H) in different CH4-emission sources. Such variability is especially prevalent in freshwater wetlands where a range of processes can influence stable isotope compositions, resulting in variations of up to approximately 50% for delta13C-CH4 and approximately 50% for deltaD-CH4 values. Within a temperate-zone bog and marsh situated in southwestern Ontario, Canada, gas bubbles in pond sediments exhibit only minor seasonal and spatial variation in delta13C-CH4, deltaD-CH4 and delta13C-CO2 values. In pond sediments, CO2 appears to be the main source of carbon during methanogenesis either directly via CO2 reduction or indirectly through dissimilation of autotrophic acetate. In contrast, CH4 production occurs primarily via acetate fermentation at shallow depths in peat soils adjacent to ponds at each wetland. At greater depths within soils, sigmaCO2 and H2O increasingly exert an influence on delta13C- and deltaD-CH4 values. Secondary alteration processes (e.g., methanotrophy or diffusive transport) are unlikely to be responsible for depth-related changes in stable isotope values of CH4. Recent models that attempt to predict deltaD-CH4 values in freshwater environments from D/H ratios in local precipitation do not adequately account for such changes with depth. Subenvironments (i.e., soil-forming and open water areas) in wetlands should be considered separately with respect to stable isotope signatures in CH4 emission models.
关于不同甲烷排放源中稳定同位素比率(13C/12C和D/H)的时空变异性,仍然存在很多不确定性。这种变异性在淡水湿地中尤为普遍,在那里一系列过程会影响稳定同位素组成,导致δ13C-CH4值变化高达约50%,δD-CH4值变化高达约50%。在加拿大安大略省西南部的一个温带沼泽和湿地中,池塘沉积物中的气泡在δ13C-CH4、δD-CH4和δ13C-CO2值方面仅表现出微小的季节和空间变化。在池塘沉积物中,CO2似乎是甲烷生成过程中碳的主要来源,要么直接通过CO2还原,要么间接通过自养乙酸盐的异化作用。相比之下,甲烷生成主要通过与每个湿地池塘相邻的泥炭土浅表层的乙酸发酵发生。在土壤更深的深度,σCO2和H2O对δ13C-和δD-CH4值的影响越来越大。二级蚀变过程(例如,甲烷氧化或扩散传输)不太可能是导致甲烷稳定同位素值随深度变化的原因。最近试图根据当地降水中的D/H比率预测淡水环境中δD-CH4值的模型没有充分考虑到这种随深度的变化。在甲烷排放模型中,湿地中的亚环境(即土壤形成区和开阔水域)应就稳定同位素特征分别进行考虑。