Suppr超能文献

从普通内科自由文本报告中自动编码医院转诊原因

Automatic coding of reasons for hospital referral from general medicine free-text reports.

作者信息

Letrilliart L, Viboud C, Boëlle P Y, Flahault A

机构信息

INSERM Unit 444, WHO Collaborating Center for Electronic Disease Surveillance, Paris, France.

出版信息

Proc AMIA Symp. 2000:487-91.

Abstract

Although the coding of medical data is expected to benefit both patients and the health care system, its implementation as a manual process often represents a poorly attractive workload for the physician. For epidemiological purpose, we developed a simple automatic coding system based on string matching, which was designed to process free-text sentences stating reasons for hospital referral, as collected from general practitioners (GPs). This system relied on a look-up table, built up from 2590 reports giving a single reason for referral, which were coded manually according to the International Classification of Primary Care (ICPC). We tested the system by entering 797 new reasons for referral. The match rate was estimated at 77%, and the accuracy rate, at 80% at code level and 92% at chapter level. This simple system is now routinely used by a national epidemiological network of sentinel physicians.

摘要

尽管医学数据编码有望使患者和医疗保健系统都受益,但作为一种手动流程来实施时,它对医生来说往往是一项缺乏吸引力的繁重工作。出于流行病学目的,我们开发了一种基于字符串匹配的简单自动编码系统,该系统旨在处理从全科医生(GP)处收集的、陈述医院转诊原因的自由文本句子。该系统依赖于一个查找表,该表由2590份给出单一转诊原因的报告构建而成,这些报告已根据国际初级保健分类(ICPC)进行了手动编码。我们通过输入797条新的转诊原因对该系统进行了测试。匹配率估计为77%,准确率在代码级别为80%,在章节级别为92%。这个简单的系统现在被一个全国性的哨点医生流行病学网络常规使用。

相似文献

5
Primary health care ICD--a tool for general practice research.初级卫生保健国际疾病分类——全科医学研究工具
Int J Health Plann Manage. 2000 Apr-Jun;15(2):133-48. doi: 10.1002/1099-1751(200004/06)15:2<133::AID-HPM583>3.0.CO;2-J.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验