Suppr超能文献

QueryCat:医学文献数据库(MEDLINE)查询的自动分类

QueryCat: automatic categorization of MEDLINE queries.

作者信息

Pratt W, Wasserman H

机构信息

Information and Computer Science Department, University of California, Irvine, USA.

出版信息

Proc AMIA Symp. 2000:655-9.

Abstract

A searcher's inability to formulate an appropriate query can result in an overwhelming number of retrieved documents. Our approach to this problem is to use information about common types or categories of queries to (1) reformulate the user's initial query and (2) create an informative organization of the retrieved documents from the reformulated query. To achieve these goals, we first must identify which common categories or types of queries are the best abstraction of the user's specific query. In this paper, we describe a system that performs this first step of categorizing the user's query. Our system uses a two-phased approach: a lexical analysis phase, and a semantic analysis phase. An evaluation of our system demonstrates that its query categorization corresponds reasonably well to the query categorizations by medical librarians and physicians.

摘要

搜索者无法制定合适的查询可能会导致检索到的文档数量过多。我们解决这个问题的方法是利用有关常见查询类型或类别的信息来:(1)重新制定用户的初始查询;(2)根据重新制定的查询对检索到的文档进行信息性组织。为了实现这些目标,我们首先必须确定哪些常见的查询类别或类型是用户特定查询的最佳抽象。在本文中,我们描述了一个执行对用户查询进行分类的第一步的系统。我们的系统采用两阶段方法:词汇分析阶段和语义分析阶段。对我们系统的评估表明,其查询分类与医学图书馆员和医生的查询分类相当吻合。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验