Duchen M R
Life Sciences Imaging Consortium and Mitochondrial Biology Group, Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
J Physiol. 2000 Nov 15;529 Pt 1(Pt 1):57-68. doi: 10.1111/j.1469-7793.2000.00057.x.
While a pathway for Ca2+ accumulation into mitochondria has long been established, its functional significance is only now becoming clear in relation to cell physiology and pathophysiology. The observation that mitochondria take up Ca2+ during physiological Ca2+ signalling in a variety of cell types leads to four questions: (i) 'What is the impact of mitochondrial Ca2+ uptake on mitochondrial function?' (ii) 'What is the impact of mitochondrial Ca2+ uptake on Ca2+ signalling?' (iii) 'What are the consequences of impaired mitochondrial Ca2+ uptake for cell function?' and finally (iv) 'What are the consequences of pathological [Ca2+]c signalling for mitochondrial function?' These will be addressed in turn. Thus: (i) accumulation of Ca2+ into mitochondria regulates mitochondrial metabolism and causes a transient depolarisation of mitochondrial membrane potential. (ii) Mitochondria may act as a spatial Ca2+ buffer in many cells, regulating the local Ca2+ concentration in cellular microdomains. This process regulates processes dependent on local cytoplasmic Ca2+ concentration ([Ca2+]c), particularly the flux of Ca2+ through IP3-gated channels of the endoplasmic reticulum (ER) and the channels mediating capacitative Ca2+ influx through the plasma membrane. Consequently, mitochondrial Ca2+ uptake plays a substantial role in shaping [Ca2+]c signals in many cell types. (iii) Impaired mitochondrial Ca2+ uptake alters the spatiotemporal characteristics of cellular [Ca2+]c signalling and downregulates mitochondrial metabolism. (iv) Under pathological conditions of cellular [Ca2+]c overload, particularly in association with oxidative stress, mitochondrial Ca2+ uptake may trigger pathological states that lead to cell death. In the model of glutamate excitotoxicity, microdomains of [Ca2+]c are apparently central, as the pathway to cell death seems to require the local activation of neuronal nitric oxide synthase (nNOS), itself held by scaffolding proteins in close association with the NMDA receptor. Mitochondrial Ca2+ uptake in combination with NO production triggers the collapse of mitochondrial membrane potential, culminating in delayed cell death.
虽然钙离子积聚进入线粒体的途径早已确立,但其功能意义直到现在才在细胞生理学和病理生理学方面变得清晰起来。在多种细胞类型的生理性钙离子信号传导过程中线粒体摄取钙离子这一观察结果引发了四个问题:(i)“线粒体摄取钙离子对线粒体功能有何影响?”(ii)“线粒体摄取钙离子对钙离子信号传导有何影响?”(iii)“线粒体摄取钙离子受损对细胞功能有何后果?”以及最后(iv)“病理性细胞质钙离子信号传导对线粒体功能有何后果?”这些问题将依次得到解答。具体如下:(i)钙离子积聚进入线粒体可调节线粒体代谢并导致线粒体膜电位的短暂去极化。(ii)在许多细胞中,线粒体可能充当空间钙离子缓冲器,调节细胞微区中的局部钙离子浓度。这一过程调节依赖于局部细胞质钙离子浓度([Ca2+]c)的过程,特别是钙离子通过内质网(ER)的IP3门控通道以及介导通过质膜的容量性钙离子内流的通道的通量。因此,线粒体摄取钙离子在塑造多种细胞类型的[Ca2+]c信号中发挥着重要作用。(iii)线粒体摄取钙离子受损会改变细胞[Ca2+]c信号传导的时空特征并下调线粒体代谢。(iv)在细胞[Ca2+]c过载的病理条件下,特别是与氧化应激相关时,线粒体摄取钙离子可能引发导致细胞死亡的病理状态。在谷氨酸兴奋性毒性模型中,[Ca2+]c的微区显然至关重要,因为细胞死亡途径似乎需要神经元型一氧化氮合酶(nNOS)的局部激活,而nNOS本身由与NMDA受体紧密结合的支架蛋白所固定。线粒体摄取钙离子与一氧化氮产生相结合会引发线粒体膜电位的崩溃,最终导致延迟性细胞死亡。