Suppr超能文献

用于高通量作用模式识别的内源性细胞代谢物模式识别分析:消除与全生物体高通量筛选相关的筛选后困境。

Pattern recognition analysis of endogenous cell metabolites for high throughput mode of action identification: removing the postscreening dilemma associated with whole-organism high throughput screening.

作者信息

Hole S J, Howe P W, Stanley P D, Hadfield S T

机构信息

Zeneca Agrochemicals, Jealott's Hill Research Station, Bracknell, Berkshire, United Kingdom.

出版信息

J Biomol Screen. 2000 Oct;5(5):335-42. doi: 10.1177/108705710000500505.

Abstract

Although whole-organism HTS can give clear indications of in vivo activity, typically few clues are given as to the mechanism of action (MOA), and determining the MOA for large numbers of active compounds can be costly and complex-an alternative approach is required. This report demonstrates that it is possible to conduct relatively high throughput MOA characterization of HTS hits utilizing a single sample preparation and analytical method. By monitoring a wide range of endogenous cellular metabolites via (1)H nuclear magnetic resonance spectroscopy, the MOA of herbicides can be predicted using computational methods to compare the metabolite perturbation patterns. Herbicides that induce a characteristic pattern of metabolic perturbation in maize include inhibitors of acetolactate synthase, acetyl co-enzyme A carboxylase, protoporphyrinogen oxidase, 5-enolpyruvylshikimate-3-phosphate synthase, and phytoene desaturase. In soya, photosystem II inhibitors can also be detected, further demonstrating that this method is not limited to inhibitors of enzymes that directly act upon endogenous metabolites, or a single species. The methods, including data analysis, can be readily automated, enabling relatively high throughput MOA elucidation of whole-organism screen hits. Additionally, for compounds with a novel MOA, this approach may lead to MOA identification faster than traditional methods. It is envisaged that application of these data analysis methods to other data types-for example, transcription (mRNA) or translation (protein) profiles-is likely to permit higher throughput with smaller sample requirements, along with ability to discriminate MOAs that are not adequately discriminated based upon endogenous metabolite profiles.

摘要

虽然全生物体高通量筛选(HTS)能够清晰显示体内活性,但通常对于作用机制(MOA)几乎没有给出线索,而且确定大量活性化合物的作用机制可能成本高昂且复杂,因此需要一种替代方法。本报告表明,利用单一的样品制备和分析方法对高通量筛选命中物进行相对高通量的作用机制表征是可行的。通过(1)H核磁共振波谱监测多种内源性细胞代谢物,可以使用计算方法比较代谢物扰动模式来预测除草剂的作用机制。在玉米中诱导特征性代谢扰动模式的除草剂包括乙酰乳酸合成酶抑制剂、乙酰辅酶A羧化酶抑制剂、原卟啉原氧化酶抑制剂、5-烯醇丙酮酸莽草酸-3-磷酸合酶抑制剂和八氢番茄红素去饱和酶抑制剂。在大豆中,还可以检测到光系统II抑制剂,这进一步证明该方法不限于直接作用于内源性代谢物的酶抑制剂,也不限于单一物种。这些方法,包括数据分析,可以很容易地实现自动化,从而能够对全生物体筛选命中物进行相对高通量的作用机制阐释。此外,对于具有新作用机制的化合物,这种方法可能比传统方法更快地鉴定出作用机制。预计将这些数据分析方法应用于其他数据类型,例如转录(mRNA)或翻译(蛋白质)谱,可能会在样本需求量较小的情况下实现更高的通量,同时能够区分基于内源性代谢物谱无法充分区分的作用机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验