Suppr超能文献

代谢组学对受生物活性化合物影响的代谢途径进行分类。植物提取物核磁共振谱的人工神经网络分类。

Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

作者信息

Ott Karl-Heinz, Araníbar Nelly, Singh Bijay, Stockton Gerald W

机构信息

BASF Agro Research, Princeton, NJ 08543, USA.

出版信息

Phytochemistry. 2003 Mar;62(6):971-85. doi: 10.1016/s0031-9422(02)00717-3.

Abstract

The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery.

摘要

通过对植物粗提物的1H NMR谱中体现的代谢组进行自动模式识别,可快速且同时对除草剂和其他生物活性化合物的生化作用模式(MOA)进行分类。如今农业中使用的约300种除草剂影响不到30种不同的生化途径。在本报告中,19种最有趣的作用模式被自动分类。用各种除草剂处理玉米(Zea mays)植株,如咪草烟、草甘膦、烯禾啶和敌草隆,这些除草剂代表了各种生化作用模式,如抑制特定酶(乙酰羟酸合酶[AHAS]、原卟啉IX氧化酶[PROTOX]、5-烯醇丙酮酸莽草酸-3-磷酸合酶[EPSPS]、乙酰辅酶A羧化酶[ACC-ase]等),或蛋白质复合物(光系统I和II),或主要生物过程,如氧化磷酸化、生长素运输、微管生长和有丝分裂。对处理过的植株的粗提物进行1H NMR光谱分析,并通过人工神经网络分析对光谱进行分类,以区分除草剂的作用模式。我们展示了该方法的使用和改进,并给出了400多个植物提取物代谢物NMR谱的交叉验证归属。作用模式筛选还能识别何时出现新的作用模式,这对除草剂发现过程极为重要,并且可用于研究化学合成项目中化合物代谢的偏差。NMR代谢物谱分析和神经网络分类的结合预计与其他代谢组学分析应用同样相关,如在药物发现中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验