Dillon R H, Fauci L J
Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164, USA.
J Theor Biol. 2000 Dec 7;207(3):415-30. doi: 10.1006/jtbi.2000.2182.
We present a fluid-mechanical model of an individual cilium which incorporates discrete representations of the dynein arms, the passive elastic structure of the axoneme including the microtubules and nexin links. This model, based upon the immersed boundary method (Peskin, 1977), couples the internal force generation of the molecular motors through the passive elastic structure with the external fluid mechanics governed by the Navier-Stokes equations. Detailed geometric information is available, such as the spacing and shear between the microtubules, the local curvature of individual microtubules and the stretching of the nexin links. In addition, the explicit representation of the dynein motors allows us the flexibility to incorporate a variety of activation theories. In this article, we choose a simple activation theory so that the ciliary beat is not present, but is an emergent property of the interacting components of the coupled fluid-axoneme system. We present numerical results from computer simulations of sliding disintegration and ciliary beating with several different viscosities.
我们提出了一个单个纤毛的流体力学模型,该模型纳入了动力蛋白臂的离散表示、包括微管和连接蛋白连接的轴丝的被动弹性结构。这个基于浸入边界法(佩斯金,1977年)的模型,通过被动弹性结构将分子马达的内力产生与由纳维-斯托克斯方程控制的外部流体力学耦合起来。可以获得详细的几何信息,如微管之间的间距和剪切、单个微管的局部曲率以及连接蛋白连接的拉伸。此外,动力蛋白马达的显式表示使我们能够灵活地纳入各种激活理论。在本文中,我们选择了一个简单的激活理论,使得纤毛摆动不存在,而是耦合流体-轴丝系统相互作用组件的一种涌现特性。我们展示了几种不同粘度下滑动解体和纤毛摆动的计算机模拟数值结果。