The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India.
Sci Rep. 2013;3:1964. doi: 10.1038/srep01964.
Non-equilibrium processes which convert chemical energy into mechanical motion enable the motility of organisms. Bundles of inextensible filaments driven by energy transduction of molecular motors form essential components of micron-scale motility engines like cilia and flagella. The mimicry of cilia-like motion in recent experiments on synthetic active filaments supports the idea that generic physical mechanisms may be sufficient to generate such motion. Here we show, theoretically, that the competition between the destabilising effect of hydrodynamic interactions induced by force-free and torque-free chemomechanically active flows, and the stabilising effect of nonlinear elasticity, provides a generic route to spontaneous oscillations in active filaments. These oscillations, reminiscent of prokaryotic and eukaryotic flagellar motion, are obtained without having to invoke structural complexity or biochemical regulation. This minimality implies that biomimetic oscillations, previously observed only in complex bundles of active filaments, can be replicated in simple chains of generic chemomechanically active beads.
非平衡过程将化学能转化为机械运动,使生物体能够运动。由分子马达的能量转换驱动的不可伸展细丝束形成了微尺度运动引擎(如纤毛和鞭毛)的基本组成部分。在最近关于合成活性纤维的类纤毛运动模拟实验中,支持了通用物理机制可能足以产生这种运动的观点。在这里,我们从理论上表明,由无作用力和无扭矩化学机械活性流引起的流体动力相互作用的不稳定性效应与非线性弹性的稳定性效应之间的竞争,为活性纤维中的自发振荡提供了一种通用途径。这些类似于原核生物和真核生物鞭毛运动的振荡是通过不引入结构复杂性或生化调节而获得的。这种简单性意味着,以前只在复杂的活性纤维束中观察到的仿生振荡,可以在简单的通用化学机械活性珠链中复制。