Turkheimer F E, Brett M, Aston J A, Leff A P, Sargent P A, Wise R J, Grasby P M, Cunningham V J
MRC Cyclotron Unit, Hammersmith Hospital, London, UK.
J Cereb Blood Flow Metab. 2000 Nov;20(11):1610-8. doi: 10.1097/00004647-200011000-00011.
A new method is introduced for the analysis of multiple studies measured with emission tomography. Traditional models of statistical analysis (ANOVA, ANCOVA and other linear models) are applied not directly on images but on their correspondent wavelet transforms. Maps of model effects estimated from these models are filtered using a thresholding procedure based on a simple Bonferroni correction and then reconstructed. This procedure inherently represents a complete modeling approach and therefore obtains estimates of the effects of interest (condition effect, difference between conditions, covariate of interest, and so on) under the specified statistical risk. By performing the statistical modeling step in wavelet space. the procedure allows the direct estimation of the error for each wavelet coefficient; hence, the local noise characteristics are accounted for in the subsequent filtering. The method was validated by use of a null dataset and then applied to typical examples of neuroimaging studies to highlight conceptual and practical differences from existing statistical parametric mapping approaches.
本文介绍了一种用于分析发射断层扫描测量的多项研究的新方法。传统的统计分析模型(方差分析、协方差分析和其他线性模型)并非直接应用于图像,而是应用于其相应的小波变换。从这些模型估计的模型效应图使用基于简单Bonferroni校正的阈值化程序进行滤波,然后重建。该程序本质上代表了一种完整的建模方法,因此在指定的统计风险下获得了感兴趣效应(条件效应、条件之间的差异、感兴趣的协变量等)的估计值。通过在小波空间中执行统计建模步骤,该程序允许直接估计每个小波系数的误差;因此,在后续滤波中考虑了局部噪声特征。该方法通过使用空数据集进行验证,然后应用于神经影像学研究的典型示例,以突出与现有统计参数映射方法在概念和实际方面的差异。