Aston John A D, Turkheimer Federico E, Brett Matthew
Institute of Statistical Science, Academia Sinica, Taiwan.
Hum Brain Mapp. 2006 May;27(5):372-9. doi: 10.1002/hbm.20244.
An analysis of the Functional Imaging Analysis Contest (FIAC) data is presented using spatial wavelet processing. This technique allows the image to be filtered adaptively according to the data itself, rather than relying on a predetermined filter. This adaptive filtering leads to better estimation of the parameters and contrasts in terms of mean squared error. It will be shown that by introducing a slight bias into the estimation, a large reduction in the variance can be achieved, leading to better overall mean squared error estimates. As no single filter needs to be preselected, results containing many scales of information can be found. In the FIAC data, it is shown that both small-scale and large-scale (smoother, more dispersed) effects occur. The combination of small- and large-scale effects detected in the FIAC data would be easy to miss using conventional single filter analysis.
本文采用空间小波处理方法对功能成像分析竞赛(FIAC)数据进行了分析。该技术允许根据数据本身对图像进行自适应滤波,而不是依赖于预先确定的滤波器。这种自适应滤波在均方误差方面能够更好地估计参数和对比度。结果表明,通过在估计中引入轻微偏差,可以实现方差的大幅降低,从而得到更好的总体均方误差估计。由于无需预先选择单个滤波器,因此可以找到包含多种尺度信息的结果。在FIAC数据中,结果表明同时存在小尺度和大尺度(更平滑、更分散)效应。使用传统的单滤波器分析很容易错过在FIAC数据中检测到的小尺度和大尺度效应的组合。