Torizuka T, Nobezawa S, Momiki S, Kasamatsu N, Kanno T, Yoshikawa E, Futatsubashi M, Okada H, Ouchi Y
Positron Medical Center, Hamamatsu Medical Center, Hamakita, Japan.
Eur J Nucl Med. 2000 Oct;27(10):1538-42. doi: 10.1007/s002590000312.
This positron emission tomography (PET) study was designed to compare 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) kinetic parameters of tumours derived from imaging frames of 0-60 min post FDG injection with those derived from shorter imaging frames of 0-30 min. Dynamic FDG-PET scans were performed on 20 patients with primary lung cancers for 1 h after intravenous injection of FDG. Images were reconstructed with attenuation correction using transmission images obtained with a germanium-68 ring source immediately before FDG injection. A region of interest (ROI) was placed on the plane of the maximal tumour FDG uptake. Arterial input function was estimated from an ROI defined in the left atrium. Based on the standard three-compartment metabolic model, we calculated the rate constants (K1-k3) and influx constant Ki = K1k3/(k2+k3) using the imaging frames for 60 min and 30 min post FDG injection. The standardized uptake value (SUV) of tumour was measured using the imaging frame of 50-60 min post injection. High correlations were observed between kinetic parameters (K1, k2, k3 and Ki) derived from imaging frames of 0-60 min and 0-30 min [0.231+/-0.114 vs 0.260+/-0.174 (r=0.958), 1.149+/-1.038 vs 1.565+/-2.027 (r=0.968), 0.259+/-0.154 vs 0.311+/-0.194 (r=0.886) and 0.044+/-0.022 vs 0.048+/-0.023 (r=0.961), respectively, P<0.001]. Ki showed an excellent agreement between the two methods (y=-0.0041+0.9831x). Mean SUV of the lung cancers was 6.58+/-2.85. It is concluded that the briefer 30-min acquisition may yield essentially the same results as the standard 60-min imaging protocol, thus offering a time saving in dynamic PET studies in which the model parameters are desired.
本正电子发射断层扫描(PET)研究旨在比较从注射2-[氟-18]氟-2-脱氧-D-葡萄糖(FDG)后0至60分钟的成像帧得出的肿瘤FDG动力学参数与从0至30分钟的较短成像帧得出的参数。对20例原发性肺癌患者静脉注射FDG后进行1小时的动态FDG-PET扫描。使用紧接FDG注射前用锗-68环形源获得的透射图像进行衰减校正重建图像。在肿瘤FDG摄取最大的平面上放置感兴趣区(ROI)。从左心房定义的ROI估计动脉输入函数。基于标准的三室代谢模型,我们使用FDG注射后60分钟和30分钟的成像帧计算速率常数(K1-k3)和流入常数Ki = K1k3/(k2 + k3)。使用注射后50至60分钟的成像帧测量肿瘤的标准化摄取值(SUV)。在从0至60分钟和0至30分钟的成像帧得出的动力学参数(K1、k2、k3和Ki)之间观察到高度相关性[分别为0.231±0.114对0.260±0.174(r = 0.958),1.149±1.038对1.565±2.027(r = 0.968),0.259±0.154对0.311±0.194(r = 0.886)和0.044±0.022对0.048±0.023(r = 0.961),P <0.001]。两种方法之间Ki显示出极好的一致性(y = -0.0041 + 0.9831x)。肺癌的平均SUV为6.58±2.85。结论是,30分钟的较短采集时间可能产生与标准60分钟成像方案基本相同的结果,从而在需要模型参数的动态PET研究中节省时间。