Suppr超能文献

使用随机变分预测进行循环帧生成的快速动态脑PET成像

Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation.

作者信息

Sanaat Amirhossein, Mirsadeghi Ehsan, Razeghi Behrooz, Ginovart Nathalie, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran.

出版信息

Med Phys. 2021 Sep;48(9):5059-5071. doi: 10.1002/mp.15063. Epub 2021 Jul 21.

Abstract

PURPOSE

We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.

METHODS

Clinical dynamic F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25-90 minutes) from the initial 13 frames (0-25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.

RESULTS

The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake bias (-0.04) for the putamen region and the smallest variance (95% CI: -0.38, +0.14) for the cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value <0.05), respectively.

CONCLUSION

We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.

摘要

目的

我们评估一种循环帧生成算法在动态脑PET成像中从初始帧预测晚期帧的性能。

方法

回顾性采用46名受试者的临床动态F-DOPA脑PET/CT研究,并进行十折交叉验证。实施了一种新型随机对抗视频预测模型,以从初始的13帧(0-25分钟)预测最后13帧(25-90分钟)。使用既定指标对测试和验证数据集的预测动态PET帧进行定量分析。

结果

预测的动态图像表明该模型能够预测随时间变化的示踪剂生物分布的变化趋势。Bland-Altman图显示壳核区域的示踪剂摄取偏差最低(-0.04),小脑的方差最小(95%CI:-0.38,+0.14)。对测试和验证数据集中八名受试者的尾状核和壳核区域进行的区域特异性Patlak图形分析表明, 和分布体积的平均偏差分别为4.3%、5.1%和4.4%、4.2%(P值<0.05)。

结论

我们开发了一种用于快速动态脑PET成像的新型深度学习方法,能够从初始的25分钟帧生成最后65分钟的时间帧,从而显著减少扫描时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2b/8518550/45881d271c0c/MP-48-5059-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验