Suppr超能文献

基于人工神经网络通过气相色谱和电泳数据鉴定环境细菌

Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.

作者信息

Giacomini M, Ruggiero C, Calegari L, Bertone S

机构信息

DIST, University of Genova, Via Opera Pia 13, 16145, Genova, Italy.

出版信息

J Microbiol Methods. 2000 Dec 1;43(1):45-54. doi: 10.1016/s0167-7012(00)00203-7.

Abstract

Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, for which poor diagnostic schemes are available. Whole cellular fatty acid methyl esters (FAME) content is a stable bacterial profile, the analysis method is rapid, cheap, simple to perform and highly automated. Whole-cell protein is an even more powerful tool because it yields information at or below the species level. The description of new species and genera and subsequent continuous rearrangement provide large amounts of data, resulting in large databases. In order to set up suitable software tools to work on such large databases artificial neural network (ANN) based programs have been used to classify and identify marine bacteria at genus and species levels, starting from the fatty acid profiles and protein profiles respectively. We analysed 50 certified strains belonging to Halomonas, Marinomonas, Marinospirillum, Oceanospirillum and Pseudoalteromonas genera. Both supervised and unsupervised ANNs provide a correct classification of the marine strains analyzed. Moreover, a set of 73 marine fresh isolates were used as an example of identification using ANNs. We propose supervised and unsupervised ANNs as a reliable tool for classification of bacteria by means of their FAME and of whole-protein analyses and as a sound basis for a comprehensive artificial intelligence based system for polyphasic taxonomy.

摘要

化学分类鉴定技术是研究环境微生物的有力工具,而针对环境微生物的诊断方法却很匮乏。全细胞脂肪酸甲酯(FAME)含量是一种稳定的细菌特征,其分析方法快速、廉价、操作简单且高度自动化。全细胞蛋白则是一种更强大的工具,因为它能提供种或种以下水平的信息。新物种和属的描述以及随后不断的重新分类提供了大量数据,形成了庞大的数据库。为了建立适用于此类大型数据库的软件工具,基于人工神经网络(ANN)的程序已被用于分别从脂肪酸谱和蛋白质谱对海洋细菌进行属和种水平的分类与鉴定。我们分析了50株经认证的菌株,它们分别属于嗜盐单胞菌属、海单胞菌属、海螺旋菌属、海洋螺菌属和假交替单胞菌属。有监督和无监督的人工神经网络都能对所分析的海洋菌株进行正确分类。此外,还以一组73株海洋新鲜分离株为例,展示了如何使用人工神经网络进行鉴定。我们提出,有监督和无监督的人工神经网络是通过脂肪酸甲酯分析和全蛋白分析对细菌进行分类的可靠工具,也是基于人工智能的多相分类综合系统的坚实基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验