Pudota B N, Miyagi M, Hallgren K W, West K A, Crabb J W, Misono K S, Berkner K L
Department of Molecular Cardiology, Lerner Research Institute, Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Foundation, 9500 Euclid Avenue, NB50, Cleveland, OH 44195, USA.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13033-8. doi: 10.1073/pnas.97.24.13033.
The vitamin K-dependent carboxylase modifies and renders active vitamin K-dependent proteins involved in hemostasis, cell growth control, and calcium homeostasis. Using a novel mechanism, the carboxylase transduces the free energy of vitamin K hydroquinone (KH(2)) oxygenation to convert glutamate into a carbanion intermediate, which subsequently attacks CO(2), generating the gamma-carboxylated glutamate product. How the carboxylase effects this conversion is poorly understood because the active site has not been identified. Dowd and colleagues [Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684-1691] have proposed that a weak base (cysteine) produces a strong base (oxygenated KH(2)) capable of generating the carbanion. To define the active site and test this model, we identified the amino acids that participate in these reactions. N-ethyl maleimide inhibited epoxidation and carboxylation, and both activities were equally protected by KH(2) preincubation. Amino acid analysis of (14)C- N-ethyl maleimide-modified human carboxylase revealed 1.8-2.3 reactive residues and a specific activity of 7 x 10(8) cpm/hr per mg. Tryptic digestion and liquid chromatography electrospray mass spectrometry identified Cys-99 and Cys-450 as active site residues. Mutation to serine reduced both epoxidation and carboxylation, to 0. 2% (Cys-99) or 1% (Cys-450), and increased the K(m)s for a glutamyl substrate 6- to 8-fold. Retention of some activity indicates a mechanism for enhancing cysteine/serine nucleophilicity, a property shared by many active site thiol enzymes. These studies, which represent a breakthrough in defining the carboxylase active site, suggest a revised model in which the glutamyl substrate indirectly coordinates at least one thiol, forming a catalytic complex that ionizes a thiol to initiate KH(2) oxygenation.
维生素K依赖性羧化酶修饰并激活参与止血、细胞生长控制和钙稳态的维生素K依赖性蛋白。该羧化酶利用一种新机制,将维生素K对苯二酚(KH₂)氧化的自由能转化,将谷氨酸转化为碳负离子中间体,该中间体随后攻击CO₂,生成γ-羧化谷氨酸产物。由于尚未确定活性位点,人们对羧化酶如何实现这种转化了解甚少。Dowd及其同事[Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684 - 1691]提出,一种弱碱(半胱氨酸)产生一种能够生成碳负离子的强碱(氧化的KH₂)。为了确定活性位点并验证该模型,我们鉴定了参与这些反应的氨基酸。N-乙基马来酰亚胺抑制环氧化和羧化反应,且两种活性均受到KH₂预孵育的同等保护。对¹⁴C-N-乙基马来酰亚胺修饰的人羧化酶进行氨基酸分析,发现有1.8 - 2.3个反应性残基,比活性为每毫克7×10⁸ cpm/小时。胰蛋白酶消化和液相色谱电喷雾质谱法确定Cys-99和Cys-450为活性位点残基。突变为丝氨酸后,环氧化和羧化反应均降至0.2%(Cys-99)或1%(Cys-450),并使谷氨酰底物的米氏常数增加6至8倍。仍保留一些活性表明存在增强半胱氨酸/丝氨酸亲核性的机制,这是许多活性位点硫醇酶共有的特性。这些研究代表了在确定羧化酶活性位点方面的突破,提示了一个修订模型,即谷氨酰底物间接配位至少一个硫醇,形成一个催化复合物,使硫醇离子化以启动KH₂氧化。