Cencini M, Falcioni M, Olbrich E, Kantz H, Vulpiani A
Dipartimento di Fisica, Universita di Roma "La Sapienza" and INFM, Unita di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy and Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Strasse 38, D-01187 Dresden, Germany.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt A):427-37. doi: 10.1103/physreve.62.427.
In experiments, the dynamical behavior of systems is reflected in time series. Due to the finiteness of the observational data set, it is not possible to reconstruct the invariant measure up to an arbitrarily fine resolution and an arbitrarily high embedding dimension. These restrictions limit our ability to distinguish between signals generated by different systems, such as regular, chaotic, or stochastic ones, when analyzed from a time series point of view. We propose to classify the signal behavior, without referring to any specific model, as stochastic or deterministic on a certain scale of the resolution epsilon, according to the dependence of the (epsilon,tau) entropy, h(epsilon, tau), and the finite size Lyapunov exponent lambda(epsilon) on epsilon.
在实验中,系统的动力学行为反映在时间序列中。由于观测数据集的有限性,不可能将不变测度重构到任意精细的分辨率和任意高的嵌入维数。当从时间序列的角度进行分析时,这些限制限制了我们区分由不同系统生成的信号的能力,例如规则、混沌或随机系统。我们建议,在不参考任何特定模型的情况下,根据(ε,τ)熵h(ε,τ)和有限尺寸李雅普诺夫指数λ(ε)对ε的依赖性,在分辨率ε的特定尺度上,将信号行为分类为随机或确定性的。