Suppr超能文献

多孔介质中的统计分形吸附等温线、线性能量关系及幂律捕获时间分布

Statistical fractal adsorption isotherms, linear energy relations, and power-law trapping-time distributions in porous media.

作者信息

Vlad MO, Cerofolini G, Ross J

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305-5080 and Center of Mathematical Statistics, Casa Academiei Romane, Calea Septembrie 13, 76100 Bucharest, Romania.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):837-44. doi: 10.1103/physreve.62.837.

Abstract

Drazer and Zanette [Phys. Rev. E 60, 5858 (1999)] have reported on interesting experiments which show that trapping-time distributions in porous media obey a scaling law of the negative power-law type. Unfortunately, their theoretical interpretation of the experimental data has physical and mathematical inconsistencies and errors. Drazer and Zanette assume the existence of a distribution of local adsorption isotherms for which the random parameter is not a thermodynamic function, but a kinetic parameter, the trapping time. Moreover, they mistakenly identify the reciprocal value of a rate coefficient with the instantaneous (fluctuating) value of the trapping time. Their approach leads to mathematically inconsistent probability densities for the trapping times, which they find to be non-normalizable. We suggest a different theory, which is physically and mathematically consistent. We start with the classical patch approximation, which assumes the existence of a distribution of adsorption heats, and introduce two linear energy relationships between the activation energies of the adsorption and desorption processes and the adsorption heat. If the distribution of the adsorption heat obeys the exponential law of Zeldovich and Roghinsky, then both the adsorption isotherm and the probability density of trapping times can be evaluated analytically in terms of the incomplete beta and gamma functions, respectively. Our probability density of the trapping times is mathematically consistent; that is, it is non-negative and normalized to unity. For large times it has a long tail which obeys a scaling law of the negative power-law type, which is consistent with the experimental data of Drazer and Zanette. By using their data we can evaluate the numerical values of the proportionality coefficients in the linear energy relations. The theory suggests that experimental study of the temperature dependence of the fractal exponents helps to elucidate the mechanism of the adsorption-desorption process.

摘要

德拉泽和扎内特[《物理评论E》60, 5858 (1999)]报道了一些有趣的实验,这些实验表明多孔介质中的俘获时间分布服从负幂律类型的标度律。不幸的是,他们对实验数据的理论解释存在物理和数学上的不一致与错误。德拉泽和扎内特假设存在局部吸附等温线分布,其随机参数不是一个热力学函数,而是一个动力学参数,即俘获时间。此外,他们错误地将速率系数的倒数与俘获时间的瞬时(波动)值等同起来。他们的方法导致俘获时间的概率密度在数学上不一致,他们发现其不可归一化。我们提出一种不同的理论,它在物理和数学上都是一致的。我们从经典的斑块近似出发,该近似假设存在吸附热分布,并引入吸附和解吸过程的活化能与吸附热之间的两个线性能量关系。如果吸附热的分布服从泽尔多维奇和罗金斯基的指数律,那么吸附等温线和俘获时间的概率密度就可以分别用不完全贝塔函数和伽马函数解析地求值。我们的俘获时间概率密度在数学上是一致的;也就是说,它是非负的且归一化为1。对于长时间,它有一个长尾,服从负幂律类型的标度律,这与德拉泽和扎内特的实验数据一致。通过使用他们的数据,我们可以评估线性能量关系中比例系数的数值。该理论表明,对分形指数的温度依赖性进行实验研究有助于阐明吸附 - 解吸过程的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验