Yamamoto Eiji, Akimoto Takuma, Hirano Yoshinori, Yasui Masato, Yasuoka Kenji
Department of Mechanical Engineering, Keio University, Yokohama-shi, Kanagawa 223-8522, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052715. doi: 10.1103/PhysRevE.87.052715. Epub 2013 May 28.
Cell membranes provide unique local environments for biological reactions, where the diffusion of biomolecules as well as water molecules plays critical roles. Translational and rotational motions of water molecules near membranes are known to be slower than those in bulk. Using all-atom molecular dynamics simulations of a membrane, we show that the temperature dependence of the water molecular motions on the membrane surface is different from that in bulk. Decreasing temperature enhances the water retardation on the membrane surface, and the lateral motions of water molecules are correlated with the vertical motions. We find that trapping times of water molecules onto membrane surfaces are distributed according to a power-law distribution and that the power-law exponents depend linearly on temperature, suggesting a random energy landscape picture. Moreover, we find that water molecules on the membrane surfaces exhibit subdiffusions in translational motions.
细胞膜为生物反应提供了独特的局部环境,其中生物分子以及水分子的扩散起着关键作用。已知膜附近水分子的平移和旋转运动比本体中的运动要慢。通过对膜进行全原子分子动力学模拟,我们表明膜表面水分子运动的温度依赖性与本体中的不同。温度降低会增强膜表面的水阻滞,并且水分子的横向运动与垂直运动相关。我们发现水分子在膜表面的捕获时间根据幂律分布,并且幂律指数线性依赖于温度,这表明存在随机能量景观图景。此外,我们发现膜表面的水分子在平移运动中表现出亚扩散。