Suppr超能文献

Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions.

作者信息

Bologna M, Tsallis C, Grigolini P

机构信息

Department of Physics, University of North Texas, P.O. Box 311427, Denton, Texas 76203, USA.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):2213-8. doi: 10.1103/physreve.62.2213.

Abstract

We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))P(x,t). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity<gamma</=2). By considering the long-distance asymptotic behavior of these solutions, a connection is established, namely, q=(gamma+3)/(gamma+1)(0<gamma</=2), with the solutions optimizing the nonextensive entropy characterized by index q. Interestingly enough, this relation coincides with the one already known for Levy-like superdiffusion (i.e., nu=1 and 0<gamma</=2). Finally, for (gamma,nu)=(2,0) we obtain q=5/3, which differs from the value q=2 corresponding to the gamma=2 solutions available in the literature (nu<1 porous medium equation), thus exhibiting nonuniform convergence.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验