文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nonlinear Fokker-Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions.

作者信息

Plastino Angel R, Wedemann Roseli S

机构信息

CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Província de Buenos Aires, UNNOBA, Conicet, Roque Saenz Peña 456, Junin 6000, Argentina.

Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Rio de Janeiro 20550-900, RJ, Brazil.

出版信息

Entropy (Basel). 2020 Jan 31;22(2):163. doi: 10.3390/e22020163.


DOI:10.3390/e22020163
PMID:33285938
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7516578/
Abstract

Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the S q power-law entropic functionals. Most applications of the connection between the NLFPE and the S q entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the -Gaussian form. These -Gaussian solutions, which constitute a signature of S q -thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/7516578/ce8167b2e34a/entropy-22-00163-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/7516578/3793736208e0/entropy-22-00163-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/7516578/ce8167b2e34a/entropy-22-00163-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/7516578/3793736208e0/entropy-22-00163-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8490/7516578/ce8167b2e34a/entropy-22-00163-g002.jpg

相似文献

[1]
Nonlinear Fokker-Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions.

Entropy (Basel). 2020-1-31

[2]
From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.

Phys Rev E. 2018-2

[3]
Statistical dynamics of driven systems of confined interacting particles in the overdamped-motion regime.

Chaos. 2022-11

[4]
Curl forces and the nonlinear Fokker-Planck equation.

Phys Rev E. 2016-12

[5]
Multispecies effects in the equilibrium and out-of-equilibrium thermostatistics of overdamped motion.

Phys Rev E. 2020-8

[6]
Nonlinear drag forces and the thermostatistics of overdamped motion.

Phys Rev E. 2018-7

[7]
Non-Additive Entropic Forms and Evolution Equations for Continuous and Discrete Probabilities.

Entropy (Basel). 2023-7-27

[8]
Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003-5

[9]
Consequences of the H theorem from nonlinear Fokker-Planck equations.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007-10

[10]
Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.

Entropy (Basel). 2018-6-1

引用本文的文献

[1]
Generalized entropies, density of states, and non-extensivity.

Sci Rep. 2020-9-23

本文引用的文献

[1]
-Dimensional Classical Heisenberg Model with Arbitrarily-Ranged Interactions: Lyapunov Exponents and Distributions of Momenta and Energies.

Entropy (Basel). 2019-1-4

[2]
A Brief Review of Generalized Entropies.

Entropy (Basel). 2018-10-23

[3]
Nonlinear population dynamics in a bounded habitat.

J Theor Biol. 2018-6-7

[4]
Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise.

Phys Rev E. 2016-8

[5]
Role of dimensionality in complex networks.

Sci Rep. 2016-6-20

[6]
The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics.

Sci Rep. 2016-3-23

[7]
Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media.

Phys Rev Lett. 2015-12-4

[8]
Determining the Tsallis parameter via maximum entropy.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015-5

[9]
Nonlinear Kramers equation associated with nonextensive statistical mechanics.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015-5

[10]
Carnot cycle for interacting particles in the absence of thermal noise.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索