Poulsen S M, Kofoed C, Vester B
Department of Molecular Biology, University of Copenhagen, Copenhagen K, DK-1307, Denmark.
J Mol Biol. 2000 Dec 1;304(3):471-81. doi: 10.1006/jmbi.2000.4229.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.
许多抗生素,包括大环内酯类抗生素,通过与核糖体结合来抑制蛋白质合成。只有部分大环内酯类抗生素会影响肽基转移酶反应。16元环大环内酯类抗生素碳霉素、螺旋霉素和泰乐菌素可抑制肽基转移酶。所有这些抗生素在内酯环的5位都有一个二糖,带有一个霉糖部分。我们研究了这个霉糖部分的功能作用。14元环大环内酯类抗生素红霉素以及16元环大环内酯类抗生素去氧霉胺和查耳霉素不抑制肽基转移酶反应。这些药物在内酯环的5位有一个单糖。霉糖的存在与肽基转移酶的抑制、23S rRNA上的足迹以及大环内酯类抗生素是否能与潮霉素A竞争核糖体结合相关。通过对23S rRNA的结构域II和V进行化学探测,研究了大环内酯类抗生素与大肠杆菌核糖体的结合位点。共同的结合位点在A2058位置附近,而对U2506的影响取决于霉糖的存在。此外,A752位置的保护表明,16元环大环内酯类抗生素14位的鼠李糖部分与结构域II中的发夹35相互作用。潮霉素A和大环内酯类抗生素核糖体结合的竞争性足迹分析表明,泰乐菌素和螺旋霉素降低了23S rRNA中核苷酸的潮霉素A保护作用,而碳霉素则消除了其结合。相比之下,不抑制肽基转移酶反应的大环内酯类抗生素与潮霉素A同时结合到核糖体上。现有数据表明,大环内酯类抗生素内酯环5位的二糖对于抑制肽键形成至关重要,且霉糖部分位于23S rRNA结构域V中心环区域保守的U2506附近。