UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France.
Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA.
FEBS Lett. 2021 Mar;595(6):675-706. doi: 10.1002/1873-3468.13984. Epub 2020 Dec 4.
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
依赖能量的翻译延伸因子 A(EttA)来自大肠杆菌,是一种典型的 ABC-F 蛋白,根据细胞能量状态控制核糖体上多肽延伸的第一步。生化和结构研究已经确立,ABC-F 蛋白通常作为翻译因子发挥作用,在与核糖体 tRNA 出口结合时调节肽转移酶中心的构象。这些因子存在于原核生物和真核生物中,但不存在于古菌中,它们使用相关的分子机制来调节蛋白质合成,以实现不同的目的,从抗生素耐药性和停滞核糖体的挽救到调节哺乳动物免疫反应。在这里,我们回顾了经典的研究,这些研究描述了细菌 ABC-F 蛋白的系统发育、调节、核糖体相互作用和作用机制,并讨论了这些研究对真核 ABC-F 蛋白分子功能的影响,包括三种人类家族成员。