Henderson J P, Byun J, Williams M V, Mueller D M, McCormick M L, Heinecke J W
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Biol Chem. 2001 Mar 16;276(11):7867-75. doi: 10.1074/jbc.M005379200. Epub 2000 Nov 28.
The existence of interhalogen compounds was proposed more than a century ago, but no biological roles have been attributed to these highly oxidizing intermediates. In this study, we determined whether the peroxidases of white blood cells can generate the interhalogen gas bromine chloride (BrCl). Myeloperoxidase, the heme enzyme secreted by activated neutrophils and monocytes, uses H2O2 and Cl(-) to produce HOCl, a chlorinating intermediate. In contrast, eosinophil peroxidase preferentially converts Br(-) to HOBr. Remarkably, both myeloperoxidase and eosinophil peroxidase were able to brominate deoxycytidine, a nucleoside, and uracil, a nucleobase, at plasma concentrations of Br(-) (100 microM) and Cl(-) (100 mM). The two enzymes used different reaction pathways, however. When HOCl brominated deoxycytidine, the reaction required Br(-) and was inhibited by taurine. In contrast, bromination by HOBr was independent of Br(-) and unaffected by taurine. Moreover, taurine inhibited 5-bromodeoxycytidine production by the myeloperoxidase-H2O2-Cl(-)- Br(-) system but not by the eosinophil peroxidase-H2O2-Cl(-)-Br(-) system, indicating that bromination by myeloperoxidase involves the initial production of HOCl. Both HOCl-Br(-) and the myeloperoxidase-H2O2-Cl(-)-Br(-) system generated a gas that converted cyclohexene into 1-bromo-2-chlorocyclohexane, implicating BrCl in the reaction. Moreover, human neutrophils used myeloperoxidase, H2O2, and Br(-) to brominate deoxycytidine by a taurine-sensitive pathway, suggesting that transhalogenation reactions may be physiologically relevant. 5-Bromouracil incorporated into nuclear DNA is a well known mutagen. Our observations therefore raise the possibility that transhalogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.
卤间化合物的存在早在一个多世纪前就已被提出,但这些高氧化性中间体尚未被赋予任何生物学功能。在本研究中,我们确定白细胞过氧化物酶是否能生成卤间气体氯化溴(BrCl)。髓过氧化物酶是活化的中性粒细胞和单核细胞分泌的血红素酶,它利用H2O2和Cl(-)生成次氯酸(HOCl),一种氯化中间体。相比之下,嗜酸性粒细胞过氧化物酶优先将Br(-)转化为次溴酸(HOBr)。值得注意的是,在血浆中Br(-)浓度为100 microM和Cl(-)浓度为100 mM时,髓过氧化物酶和嗜酸性粒细胞过氧化物酶都能够使脱氧胞苷(一种核苷)和尿嘧啶(一种核碱基)发生溴化反应。然而,这两种酶使用的反应途径不同。当HOCl使脱氧胞苷溴化时,反应需要Br(-),并受到牛磺酸的抑制。相比之下,HOBr引发的溴化反应与Br(-)无关,且不受牛磺酸影响。此外,牛磺酸抑制髓过氧化物酶-H2O2-Cl(-)-Br(-)体系生成5-溴脱氧胞苷,但不抑制嗜酸性粒细胞过氧化物酶-H2O2-Cl(-)-Br(-)体系,这表明髓过氧化物酶引发的溴化反应涉及HOCl的初始生成。HOCl-Br(-)体系和髓过氧化物酶-H2O2-Cl(-)-Br(-)体系都生成了一种能将环己烯转化为1-溴-2-氯环己烷的气体,这表明反应中有BrCl生成。此外,人类中性粒细胞利用髓过氧化物酶、H2O2和Br(-)通过一条对牛磺酸敏感的途径使脱氧胞苷发生溴化反应,这表明卤素转移反应可能具有生理相关性。掺入核DNA的5-溴尿嘧啶是一种众所周知的诱变剂。因此,我们的观察结果增加了一种可能性,即吞噬细胞引发的卤素转移反应为炎症部位的诱变和细胞毒性提供了一条途径。