Suppr超能文献

A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures.

作者信息

Rolls E T, Milward T

机构信息

Oxford University, Department of Experimental Psychology, England.

出版信息

Neural Comput. 2000 Nov;12(11):2547-72. doi: 10.1162/089976600300014845.

Abstract

VisNet2 is a model to investigate some aspects of invariant visual object recognition in the primate visual system. It is a four-layer feedforward network with convergence to each part of a layer from a small region of the preceding layer, with competition between the neurons within a layer and with a trace learning rule to help it learn transform invariance. The trace rule is a modified Hebbian rule, which modifies synaptic weights according to both the current firing rates and the firing rates to recently seen stimuli. This enables neurons to learn to respond similarly to the gradually transforming inputs it receives, which over the short term are likely to be about the same object, given the statistics of normal visual inputs. First, we introduce for VisNet2 both single-neuron and multiple-neuron information-theoretic measures of its ability to respond to transformed stimuli. Second, using these measures, we show that quantitatively resetting the trace between stimuli is not necessary for good performance. Third, it is shown that the sigmoid activation functions used in VisNet2, which allow the sparseness of the representation to be controlled, allow good performance when using sparse distributed representations. Fourth, it is shown that VisNet2 operates well with medium-range lateral inhibition with a radius in the same order of size as the region of the preceding layer from which neurons receive inputs. Fifth, in an investigation of different learning rules for learning transform invariance, it is shown that VisNet2 operates better with a trace rule that incorporates in the trace only activity from the preceding presentations of a given stimulus, with no contribution to the trace from the current presentation, and that this is related to temporal difference learning.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验