Suppr超能文献

在一个通过实验记录的人类注视变化进行训练的灵长类视觉系统神经网络模型中,以手部为中心的感受野的视觉发育。

The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

作者信息

Galeazzi Juan M, Navajas Joaquín, Mender Bedeho M W, Quian Quiroga Rodrigo, Minini Loredana, Stringer Simon M

机构信息

a Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology , University of Oxford , Oxford , UK.

b Institute of Cognitive Neuroscience , University College London , London , UK.

出版信息

Network. 2016;27(1):29-51. doi: 10.1080/0954898X.2016.1187311. Epub 2016 Jun 2.

Abstract

Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

摘要

在灵长类动物大脑中已发现一些神经元,它们对手心坐标系中特定位置的物体做出反应。一个关键的理论挑战是解释这种以手为中心的神经元反应如何通过视觉经验发展而来。在本文中,我们展示了在灵长类视觉系统的人工神经网络模型VisNet中,当由人类测试对象在完成拼图时记录的注视变化驱动时,以手为中心的视觉感受野是如何发展的。安装在头部的摄像头捕捉手和拼图的图像,同时使用眼动追踪设备记录眼动。这种数据组合使我们能够重建人类在进行拼图任务时所看到的视网膜图像。然后,在其突触连接的自组织过程中,使用生物学上合理的痕迹学习规则,将这些视网膜图像输入到神经网络模型中。痕迹学习机制促使模型中的神经元学会对在时间上紧密相邻出现的输入图像做出反应。在从人类受试者记录的数据中,我们发现参与者的注视常常围绕手和拼图碎片之一的固定空间配置,在一系列位置上移动。在这种情况下,痕迹学习应将这些视网膜图像绑定到同一组输出神经元上。因此,模拟结果证实,一些细胞学会了在不同的视网膜视图中,对手和处于固定空间配置的拼图碎片进行选择性反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b7c/4926791/ec04bd202fd3/inet_a_1187311_f0001_oc.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验