Suppr超能文献

PU.1-mediated transcription is enhanced by HMG-I(Y)-dependent structural mechanisms.

作者信息

Lewis R T, Andreucci A, Nikolajczyk B S

机构信息

Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

J Biol Chem. 2001 Mar 23;276(12):9550-7. doi: 10.1074/jbc.M008726200. Epub 2000 Dec 20.

Abstract

The ets transcription factor PU.1 is an important regulator of the immunoglobulin heavy chain gene intronic enhancer, or mu enhancer. However, PU.1 is only one component of the large multiprotein complex required for B cell-specific enhancer activation. The transcriptional coactivator HMG-I(Y), a protein demonstrated to physically interact with PU.1, increases PU.1 affinity for the mu enhancer muB element, indicating that HMG-I(Y) may play a role in the transcriptionally active mu enhanceosome. Increased PU.1 affinity is not mediated by HMG-I(Y)-induced changes in DNA structure. Investigation of alternative mechanisms to explain the HMG-I(Y)-mediated increase in PU.1/mu enhancer binding demonstrated, by trypsin and chymotrypsin mapping, that interaction between PU.1 and HMG-I(Y) in solution induces a structural change in PU.1. In the presence of HMG-I(Y) and wild-type mu enhancer DNA, PU.1 becomes more chymotrypsin resistant, suggesting an additional change in PU.1 structure upon HMG-I(Y)-induced PU.1/DNA binding. From these results, we suggest that increased DNA affinity under limiting PU.1 concentrations is mediated by an HMG-I(Y)-induced structural change in PU.1. In functional assays, HMG-I(Y) further augments transcriptional synergy between PU.1 and another member of the ets family, Ets-1, indicating that HMG-I(Y) is a functional component of the active enhancer complex. These studies suggest a new mechanism for HMG-I(Y)-mediated coactivation; HMG-I(Y) forms protein-protein interactions with a transcription factor, which alters the three-dimensional structure of the factor, resulting in enhanced DNA binding and transcriptional activation. This mechanism may be important for transcriptional activation under conditions of limiting transcription factor concentration, such as at the low levels of PU.1 expressed in B cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验