Flanagan S D, Barondes S H
J Biol Chem. 1975 Feb 25;250(4):1484-9.
We describe a method, called affinity partitioning, for the purification of proteins containing specific ligand binding receptor sites. This method adds specificity to the procedures for protein purification with aqueous polymer two-phase systems by introduction of a polymer derivative, coupled to an appropriate ligand. The addition of a polymer-ligand that partitions predominantly into one phase shifts the protein that binds this substance to the same phase. By performing countercurrent distribution in the presence of a polymer-ligand, the protein that binds the polymer-ligand can be separated from a heterogenous mixture. One example of affinity paritioning used dextran as the polymer-ligand. Dextran was chosen since it is a constituent of the most commonly used system for partitioning proteins. In a dextran-poly(ethylene oxide) system, concanavalin A bound dextran and partitioned predominantly into the dextran-rich phase. The addition of the specific competitor, D-mannose, displaced the partition coefficient toward unity, while the application of L-fucose, a noncompetitor, had little effect. Application of affinity partitioning to the purification of another protein required the synthesis of a specific polymer-ligand. To study this we synthesized dinitrophenyl-poly-(ethylene oxide), which binds specifically to S-23 myeloma protein. Addition of dinitrophenyl-poly(ethylene oxide) to the dextran-poly(ethylene oxide) phase system shifted the S-23 myeloma protein into the poly(ethylene oxide)-rich phase. epsilon-N-dinitrophenyl-L-lysine, by competing with binding of dinitrophenyl-poly(ethylene oxide), antagonized the latter's effect on the partition coefficient of S-23 myeloma protein. By adding various amounts of dinitrophenyl-poly-(ethylene oxide), we correlated the partition coefficient with concentration of polymer-ligand. A model of the action of polymer-ligand derivatives on the partition coefficient, derived from thermodynamic considerations, was found to be consistent with the experimental data relating the concentration of polymer-ligand and partition coefficient. Affinity partitioning should prove to be a useful complement to affinity chromatography in the purification of mixtures of proteins. Since cells and subcellular particles may be purified with aqueous polymer two-phase systems, affinity partitioning might be applied to their fractionation by using polymer-ligands specific for unique surface receptors.
我们描述了一种称为亲和分配的方法,用于纯化含有特定配体结合受体位点的蛋白质。该方法通过引入与适当配体偶联的聚合物衍生物,为使用水性聚合物双相系统进行蛋白质纯化的程序增添了特异性。添加主要分配到一相中的聚合物 - 配体,会使结合该物质的蛋白质转移到同一相中。通过在聚合物 - 配体存在下进行逆流分配,可以将结合聚合物 - 配体的蛋白质与异质混合物分离。亲和分配的一个例子是使用葡聚糖作为聚合物 - 配体。选择葡聚糖是因为它是蛋白质分配最常用系统的一个组成部分。在葡聚糖 - 聚(环氧乙烷)系统中,伴刀豆球蛋白A结合葡聚糖并主要分配到富含葡聚糖的相中。添加特异性竞争者D - 甘露糖会使分配系数趋向于1,而应用非竞争者L - 岩藻糖则几乎没有影响。将亲和分配应用于另一种蛋白质的纯化需要合成特定的聚合物 - 配体。为了研究这一点,我们合成了二硝基苯基 - 聚(环氧乙烷),它能特异性结合S - 23骨髓瘤蛋白。向葡聚糖 - 聚(环氧乙烷)相系统中添加二硝基苯基 - 聚(环氧乙烷)会使S - 23骨髓瘤蛋白转移到富含聚(环氧乙烷)的相中。ε - N - 二硝基苯基 - L - 赖氨酸通过与二硝基苯基 - 聚(环氧乙烷)的结合竞争,拮抗了后者对S - 23骨髓瘤蛋白分配系数的影响。通过添加不同量的二硝基苯基 - 聚(环氧乙烷),我们将分配系数与聚合物 - 配体的浓度相关联。从热力学考虑得出的聚合物 - 配体衍生物对分配系数作用的模型,被发现与关于聚合物 - 配体浓度和分配系数的实验数据一致。在蛋白质混合物的纯化中,亲和分配应被证明是亲和色谱的有用补充。由于细胞和亚细胞颗粒可用水性聚合物双相系统纯化,亲和分配可通过使用针对独特表面受体的聚合物 - 配体应用于它们的分级分离。