Suppr超能文献

评估周期内及不同评估周期间缺失数据的多变量建模。

Multivariate modeling of missing data within and across assessment waves.

作者信息

Figueredo A J, McKnight P E, McKnight K M, Sidani S

机构信息

Puget Sound Health Care System-Seattle, Washington, USA.

出版信息

Addiction. 2000 Nov;95 Suppl 3:S361-80. doi: 10.1080/09652140020004287.

Abstract

Missing data constitute a common but widely underappreciated problem in both cross-sectional and longitudinal research. Furthermore, both the gravity of the problems associated with missing data and the availability of the applicable solutions are greatly increased by the use of multivariate analysis. The most common approaches to dealing with missing data are reviewed, such as data deletion and data imputation, and their relative merits and limitations are discussed. One particular form of data imputation based on latent variable modeling, which we call Multivariate Imputation, is highlighted as holding great promise for dealing with missing data in the context of multivariate analysis. The recent theoretical extension of latent variable modeling to growth curve analysis also permitted us to extend the same kind of solution to the problem of missing data in longitudinal studies. Data simulations are used to compare the results of multivariate imputation to other common approaches to missing data.

摘要

在横断面研究和纵向研究中,数据缺失都是一个常见但普遍未得到充分重视的问题。此外,使用多变量分析极大地增加了与数据缺失相关问题的严重性以及适用解决方案的可用性。本文回顾了处理数据缺失的最常见方法,如数据删除和数据插补,并讨论了它们的相对优点和局限性。一种基于潜在变量建模的数据插补特殊形式,即我们所称的多变量插补,被强调在多变量分析背景下处理数据缺失方面具有巨大潜力。潜在变量建模最近在生长曲线分析方面的理论扩展,也使我们能够将同类型的解决方案扩展到纵向研究中的数据缺失问题。通过数据模拟来比较多变量插补与其他常见数据缺失处理方法的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验